On approximation of the Neumann problem by the penalty method

Michal Křížek

Applications of Mathematics (1993)

  • Volume: 38, Issue: 6, page 459-469
  • ISSN: 0862-7940

Abstract

top
We prove that penalization of constraints occuring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange's multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer.

How to cite

top

Křížek, Michal. "On approximation of the Neumann problem by the penalty method." Applications of Mathematics 38.6 (1993): 459-469. <http://eudml.org/doc/15766>.

@article{Křížek1993,
abstract = {We prove that penalization of constraints occuring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange's multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer.},
author = {Křížek, Michal},
journal = {Applications of Mathematics},
keywords = {Neumann problem; penalty method; finite elements; magnetic field; linear elliptic Neumann problem; Lagrange’s multipliers; linear elliptic Neumann problem; Lagrange's multipliers; penalty method; magnetic field},
language = {eng},
number = {6},
pages = {459-469},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On approximation of the Neumann problem by the penalty method},
url = {http://eudml.org/doc/15766},
volume = {38},
year = {1993},
}

TY - JOUR
AU - Křížek, Michal
TI - On approximation of the Neumann problem by the penalty method
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 6
SP - 459
EP - 469
AB - We prove that penalization of constraints occuring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange's multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer.
LA - eng
KW - Neumann problem; penalty method; finite elements; magnetic field; linear elliptic Neumann problem; Lagrange’s multipliers; linear elliptic Neumann problem; Lagrange's multipliers; penalty method; magnetic field
UR - http://eudml.org/doc/15766
ER -

References

top
  1. I. Babuška, Uncertainties in engineering design: mathematical theory and numerical experience, In the Optimal Shape, (J. Bennet and M. M. Botkin eds.), Plenum Press (1986), also in Technical Note BN-1044, Univ. of Maryland (1985), 1-35. (1986) 
  2. J. Céa, Optimization, théorie et algorithmes, Dunod, Paris, 1971. (1971) MR0298892
  3. P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
  4. I. Doležel, Numerical calculation of the leakage field in the window of a transformer with magnetic shielding, Acta Tech. ČSAV (1981), 563-588. (1981) 
  5. M. Feistauer, Mathematical methods in fluid dynamics, Longman Scientific & Technical, Harlow, 1993. (1993) Zbl0819.76001
  6. I. Hlaváček J. Nečas, 10.1007/BF00249518, Arch. Rational Mech. Anal. 36 (1970), 305-334. (1970) MR0252844DOI10.1007/BF00249518
  7. M. Křížek W. G. Litvinov, On the methods of penalty functions and Lagrange's multipliers in the abstract Neumann problem, Z. Angew. Math. Mech. (1993). (1993) 
  8. M. Křížek Z. Milka, On a nonconventional variational method for solving the problem of linear elasticity with Neumann or periodic boundary conditions, Banach Center Publ. (1993). (1993) MR1272920
  9. M. Křížek P. Neittaanmäki M. Vondrák, A nontraditional approach for solving the Neumann problem by the finite element method, Mat. Apl. Comput. 11 (1992), 31-40. (1992) MR1185236
  10. W. G. Litvinov, Optimization in elliptic boundary value problems with applications to mechanics, (in Russian), Nauka, Moscow, 1987. (1987) Zbl0688.49003MR0898435
  11. J. Nečas I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: an introduction, Elsevier, Amsterdam, 1981. (1981) MR0600655
  12. B. N. Pšeničnyj, Ju. M. Danilin, Numerical methods in extremum problems, (Russian), Nauka, Moscow, 1975. (1975) MR0474817
  13. L. Schwartz, Analyse mathématique, Vol. 1, Hermann, Paris, 1967. (1967) 
  14. A. E. Taylor, Introduction to functional analysis, John Wiley & Sons, New York, 1958. (1958) Zbl0081.10202MR0098966
  15. R. Temam, Navier-Stokes equations, North-Holland, Amsterdam, 3rd revised edn, 1984. (1984) Zbl0568.35002
  16. D. E. Ward, 10.1007/BF02346165, Optim. Theory Appl. 57 (1988), 485-499. (1988) Zbl0621.90081MR0944591DOI10.1007/BF02346165

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.