On approximation of the Neumann problem by the penalty method
Applications of Mathematics (1993)
- Volume: 38, Issue: 6, page 459-469
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKřížek, Michal. "On approximation of the Neumann problem by the penalty method." Applications of Mathematics 38.6 (1993): 459-469. <http://eudml.org/doc/15766>.
@article{Křížek1993,
abstract = {We prove that penalization of constraints occuring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange's multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer.},
author = {Křížek, Michal},
journal = {Applications of Mathematics},
keywords = {Neumann problem; penalty method; finite elements; magnetic field; linear elliptic Neumann problem; Lagrange’s multipliers; linear elliptic Neumann problem; Lagrange's multipliers; penalty method; magnetic field},
language = {eng},
number = {6},
pages = {459-469},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On approximation of the Neumann problem by the penalty method},
url = {http://eudml.org/doc/15766},
volume = {38},
year = {1993},
}
TY - JOUR
AU - Křížek, Michal
TI - On approximation of the Neumann problem by the penalty method
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 6
SP - 459
EP - 469
AB - We prove that penalization of constraints occuring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange's multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer.
LA - eng
KW - Neumann problem; penalty method; finite elements; magnetic field; linear elliptic Neumann problem; Lagrange’s multipliers; linear elliptic Neumann problem; Lagrange's multipliers; penalty method; magnetic field
UR - http://eudml.org/doc/15766
ER -
References
top- I. Babuška, Uncertainties in engineering design: mathematical theory and numerical experience, In the Optimal Shape, (J. Bennet and M. M. Botkin eds.), Plenum Press (1986), also in Technical Note BN-1044, Univ. of Maryland (1985), 1-35. (1986)
- J. Céa, Optimization, théorie et algorithmes, Dunod, Paris, 1971. (1971) MR0298892
- P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
- I. Doležel, Numerical calculation of the leakage field in the window of a transformer with magnetic shielding, Acta Tech. ČSAV (1981), 563-588. (1981)
- M. Feistauer, Mathematical methods in fluid dynamics, Longman Scientific & Technical, Harlow, 1993. (1993) Zbl0819.76001
- I. Hlaváček J. Nečas, 10.1007/BF00249518, Arch. Rational Mech. Anal. 36 (1970), 305-334. (1970) MR0252844DOI10.1007/BF00249518
- M. Křížek W. G. Litvinov, On the methods of penalty functions and Lagrange's multipliers in the abstract Neumann problem, Z. Angew. Math. Mech. (1993). (1993)
- M. Křížek Z. Milka, On a nonconventional variational method for solving the problem of linear elasticity with Neumann or periodic boundary conditions, Banach Center Publ. (1993). (1993) MR1272920
- M. Křížek P. Neittaanmäki M. Vondrák, A nontraditional approach for solving the Neumann problem by the finite element method, Mat. Apl. Comput. 11 (1992), 31-40. (1992) MR1185236
- W. G. Litvinov, Optimization in elliptic boundary value problems with applications to mechanics, (in Russian), Nauka, Moscow, 1987. (1987) Zbl0688.49003MR0898435
- J. Nečas I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: an introduction, Elsevier, Amsterdam, 1981. (1981) MR0600655
- B. N. Pšeničnyj, Ju. M. Danilin, Numerical methods in extremum problems, (Russian), Nauka, Moscow, 1975. (1975) MR0474817
- L. Schwartz, Analyse mathématique, Vol. 1, Hermann, Paris, 1967. (1967)
- A. E. Taylor, Introduction to functional analysis, John Wiley & Sons, New York, 1958. (1958) Zbl0081.10202MR0098966
- R. Temam, Navier-Stokes equations, North-Holland, Amsterdam, 3rd revised edn, 1984. (1984) Zbl0568.35002
- D. E. Ward, 10.1007/BF02346165, Optim. Theory Appl. 57 (1988), 485-499. (1988) Zbl0621.90081MR0944591DOI10.1007/BF02346165
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.