A two parameter iterative method for solving algebraic systems of domain decomposition type

Milan Práger

Applications of Mathematics (1993)

  • Volume: 38, Issue: 6, page 470-478
  • ISSN: 0862-7940

Abstract

top
An iterative procedure containing two parameters for linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numeric example is given as an illustration.

How to cite

top

Práger, Milan. "A two parameter iterative method for solving algebraic systems of domain decomposition type." Applications of Mathematics 38.6 (1993): 470-478. <http://eudml.org/doc/15767>.

@article{Práger1993,
abstract = {An iterative procedure containing two parameters for linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numeric example is given as an illustration.},
author = {Práger, Milan},
journal = {Applications of Mathematics},
keywords = {iterative methods; block matrix; domain decomposition; relaxation method; numerical experiments; domain decomposition; relaxation parameters; convergence; Neumann-Neumann preconditioner; relaxation method; numerical experiments; domain decomposition; relaxation parameters; convergence; Neumann-Neumann preconditioner},
language = {eng},
number = {6},
pages = {470-478},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A two parameter iterative method for solving algebraic systems of domain decomposition type},
url = {http://eudml.org/doc/15767},
volume = {38},
year = {1993},
}

TY - JOUR
AU - Práger, Milan
TI - A two parameter iterative method for solving algebraic systems of domain decomposition type
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 6
SP - 470
EP - 478
AB - An iterative procedure containing two parameters for linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numeric example is given as an illustration.
LA - eng
KW - iterative methods; block matrix; domain decomposition; relaxation method; numerical experiments; domain decomposition; relaxation parameters; convergence; Neumann-Neumann preconditioner; relaxation method; numerical experiments; domain decomposition; relaxation parameters; convergence; Neumann-Neumann preconditioner
UR - http://eudml.org/doc/15767
ER -

References

top
  1. M. Práger, An iterative method of alternating type for systems with special block matrices, Appl. math. 36 (1991), 72-78. (1991) MR1093483
  2. P. Bjørstad O. Widlund, 10.1137/0723075, SIAM, J. Numer. Anal 23 (1986), 1097-1120. (1986) MR0865945DOI10.1137/0723075
  3. J. Bramble J. Pasciak A. Schatz, 10.1090/S0025-5718-1986-0829613-0, Math. Comput. 46 (1986), 361-369. (1986) MR0829613DOI10.1090/S0025-5718-1986-0829613-0
  4. First international symposium on domain decomposition methods for partial differential equations, (R. Glowinski, G. H. Golub, G. A. Meurant, J. Périaux, eds.), SIAM, Philadelphia, 1988. (1988) Zbl0649.00019MR0972509
  5. Domain decomposition methods, (T. Chan, R. Glowinski, G. A. Meurant, J. Périaux, O. Widlund, eds.), SIAM, Philadelphia, 1989. (1989) Zbl0825.65091MR0991999
  6. L. D. Marini A. Quarteroni, 10.1007/BF01398917, Numer. Math 55 (1989), 575-598. (1989) MR0998911DOI10.1007/BF01398917
  7. M. Práger, Algebraic approach to domain decomposition, Banach Center Publ., Warsaw, to appear. MR1272930

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.