A two parameter iterative method for solving algebraic systems of domain decomposition type
Applications of Mathematics (1993)
- Volume: 38, Issue: 6, page 470-478
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topPráger, Milan. "A two parameter iterative method for solving algebraic systems of domain decomposition type." Applications of Mathematics 38.6 (1993): 470-478. <http://eudml.org/doc/15767>.
@article{Práger1993,
abstract = {An iterative procedure containing two parameters for linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numeric example is given as an illustration.},
author = {Práger, Milan},
journal = {Applications of Mathematics},
keywords = {iterative methods; block matrix; domain decomposition; relaxation method; numerical experiments; domain decomposition; relaxation parameters; convergence; Neumann-Neumann preconditioner; relaxation method; numerical experiments; domain decomposition; relaxation parameters; convergence; Neumann-Neumann preconditioner},
language = {eng},
number = {6},
pages = {470-478},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A two parameter iterative method for solving algebraic systems of domain decomposition type},
url = {http://eudml.org/doc/15767},
volume = {38},
year = {1993},
}
TY - JOUR
AU - Práger, Milan
TI - A two parameter iterative method for solving algebraic systems of domain decomposition type
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 6
SP - 470
EP - 478
AB - An iterative procedure containing two parameters for linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numeric example is given as an illustration.
LA - eng
KW - iterative methods; block matrix; domain decomposition; relaxation method; numerical experiments; domain decomposition; relaxation parameters; convergence; Neumann-Neumann preconditioner; relaxation method; numerical experiments; domain decomposition; relaxation parameters; convergence; Neumann-Neumann preconditioner
UR - http://eudml.org/doc/15767
ER -
References
top- M. Práger, An iterative method of alternating type for systems with special block matrices, Appl. math. 36 (1991), 72-78. (1991) MR1093483
- P. Bjørstad O. Widlund, 10.1137/0723075, SIAM, J. Numer. Anal 23 (1986), 1097-1120. (1986) MR0865945DOI10.1137/0723075
- J. Bramble J. Pasciak A. Schatz, 10.1090/S0025-5718-1986-0829613-0, Math. Comput. 46 (1986), 361-369. (1986) MR0829613DOI10.1090/S0025-5718-1986-0829613-0
- First international symposium on domain decomposition methods for partial differential equations, (R. Glowinski, G. H. Golub, G. A. Meurant, J. Périaux, eds.), SIAM, Philadelphia, 1988. (1988) Zbl0649.00019MR0972509
- Domain decomposition methods, (T. Chan, R. Glowinski, G. A. Meurant, J. Périaux, O. Widlund, eds.), SIAM, Philadelphia, 1989. (1989) Zbl0825.65091MR0991999
- L. D. Marini A. Quarteroni, 10.1007/BF01398917, Numer. Math 55 (1989), 575-598. (1989) MR0998911DOI10.1007/BF01398917
- M. Práger, Algebraic approach to domain decomposition, Banach Center Publ., Warsaw, to appear. MR1272930
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.