Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials
M. Combescure-Moulin; J. Ginibre
Annales de l'I.H.P. Physique théorique (1975)
- Volume: 23, Issue: 3, page 211-234
- ISSN: 0246-0211
Access Full Article
topHow to cite
topCombescure-Moulin, M., and Ginibre, J.. "Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials." Annales de l'I.H.P. Physique théorique 23.3 (1975): 211-234. <http://eudml.org/doc/75867>.
@article{Combescure1975,
author = {Combescure-Moulin, M., Ginibre, J.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {3},
pages = {211-234},
publisher = {Gauthier-Villars},
title = {Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials},
url = {http://eudml.org/doc/75867},
volume = {23},
year = {1975},
}
TY - JOUR
AU - Combescure-Moulin, M.
AU - Ginibre, J.
TI - Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1975
PB - Gauthier-Villars
VL - 23
IS - 3
SP - 211
EP - 234
LA - eng
UR - http://eudml.org/doc/75867
ER -
References
top- [1] P. Ferrero, O. De Pazzis, D.W. Robinson, Scattering theory with singular potentials, II the N-body problem and hard cores, Ann. I. H. P., t. 21, 1974, p. 217-231. MR377305
- [2] T. Ikebe, T. Kato, Uniqueness of self-adjoint extensions of singular elliptic differential operators, Arch. Rat. Mech. Anal., t. 9, 1962, p. 77-92. Zbl0103.31801MR142894
- [3] H. Kalf, J. Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in C∞(R 0 ), J. Funct. Anal., t. 10, 1972, p. 114-130. Zbl0229.35041MR350183
- [4] T. Kato, Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Am. Math. Soc., t. 70, 1951, p. 195-211. Zbl0044.42701MR41010
- [5] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1966. Zbl0148.12601
- [6] T. Kato, Schrödinger operators with singular potentials, Israel J. Math., t. 13, 1972, p. 135-148. Zbl0246.35025MR333833
- [7] T. Kato, A second look at the essential self-adjointness of the Schrödinger operators, in: Physical reality and mathematical description, C. P. Enz, J. Mehra, eds., D. Reidel, Dordrecht, 1974. Zbl0328.47023MR477431
- [8] D.W. Robinson, Scattering theory with singular potentials, I The two-body problem, Ann. I. H. P., t. 21, 1974, p. 185-215. MR377304
- [9] M. Schechter, Spectra of partial differential operators, North-Holland, Amsterdam, 1971. Zbl0225.35001MR447834
- [10] M. Schechter, Hamiltonians for singular potentials, Indiana Univ. Math. J., t. 22, 1972, p. 483-503. Zbl0263.47009MR305150
- [11] U.W. Schmincke, Essential self-adjointness of a Schrödinger operator with strongly singular potential, Math. Z., t. 124, 1972, p. 47-50. Zbl0225.35037
- [12] B. Simon, Essential self-adjointness of Schrödinger operators with positive potentials, Math. Ann., t. 201, 1973, p. 211-220. Zbl0234.47027MR337215
- [13] B. Simon, Essential self-adjointness of Schrödinger operators with singular potentials, Arch. Rat. Mech. Anal., t. 52, 1973, p. 44-48. Zbl0277.47007MR338548
- [14] H. Kalf, U.W. Schmincke, J. Walter, R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, in: Proceedings of the Symposium on Spectral Theory and Differential Equations, Springer Lecture Notes, Springer, Berlin, 1975. Zbl0311.47021MR397192
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.