Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials

M. Combescure-Moulin; J. Ginibre

Annales de l'I.H.P. Physique théorique (1975)

  • Volume: 23, Issue: 3, page 211-234
  • ISSN: 0246-0211

How to cite

top

Combescure-Moulin, M., and Ginibre, J.. "Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials." Annales de l'I.H.P. Physique théorique 23.3 (1975): 211-234. <http://eudml.org/doc/75867>.

@article{Combescure1975,
author = {Combescure-Moulin, M., Ginibre, J.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {3},
pages = {211-234},
publisher = {Gauthier-Villars},
title = {Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials},
url = {http://eudml.org/doc/75867},
volume = {23},
year = {1975},
}

TY - JOUR
AU - Combescure-Moulin, M.
AU - Ginibre, J.
TI - Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1975
PB - Gauthier-Villars
VL - 23
IS - 3
SP - 211
EP - 234
LA - eng
UR - http://eudml.org/doc/75867
ER -

References

top
  1. [1] P. Ferrero, O. De Pazzis, D.W. Robinson, Scattering theory with singular potentials, II the N-body problem and hard cores, Ann. I. H. P., t. 21, 1974, p. 217-231. MR377305
  2. [2] T. Ikebe, T. Kato, Uniqueness of self-adjoint extensions of singular elliptic differential operators, Arch. Rat. Mech. Anal., t. 9, 1962, p. 77-92. Zbl0103.31801MR142894
  3. [3] H. Kalf, J. Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in C∞(R 0 ), J. Funct. Anal., t. 10, 1972, p. 114-130. Zbl0229.35041MR350183
  4. [4] T. Kato, Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Am. Math. Soc., t. 70, 1951, p. 195-211. Zbl0044.42701MR41010
  5. [5] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1966. Zbl0148.12601
  6. [6] T. Kato, Schrödinger operators with singular potentials, Israel J. Math., t. 13, 1972, p. 135-148. Zbl0246.35025MR333833
  7. [7] T. Kato, A second look at the essential self-adjointness of the Schrödinger operators, in: Physical reality and mathematical description, C. P. Enz, J. Mehra, eds., D. Reidel, Dordrecht, 1974. Zbl0328.47023MR477431
  8. [8] D.W. Robinson, Scattering theory with singular potentials, I The two-body problem, Ann. I. H. P., t. 21, 1974, p. 185-215. MR377304
  9. [9] M. Schechter, Spectra of partial differential operators, North-Holland, Amsterdam, 1971. Zbl0225.35001MR447834
  10. [10] M. Schechter, Hamiltonians for singular potentials, Indiana Univ. Math. J., t. 22, 1972, p. 483-503. Zbl0263.47009MR305150
  11. [11] U.W. Schmincke, Essential self-adjointness of a Schrödinger operator with strongly singular potential, Math. Z., t. 124, 1972, p. 47-50. Zbl0225.35037
  12. [12] B. Simon, Essential self-adjointness of Schrödinger operators with positive potentials, Math. Ann., t. 201, 1973, p. 211-220. Zbl0234.47027MR337215
  13. [13] B. Simon, Essential self-adjointness of Schrödinger operators with singular potentials, Arch. Rat. Mech. Anal., t. 52, 1973, p. 44-48. Zbl0277.47007MR338548
  14. [14] H. Kalf, U.W. Schmincke, J. Walter, R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, in: Proceedings of the Symposium on Spectral Theory and Differential Equations, Springer Lecture Notes, Springer, Berlin, 1975. Zbl0311.47021MR397192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.