Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials

V. F. Kovalenko; Yu. A. Semenov

Annales de l'I.H.P. Physique théorique (1977)

  • Volume: 26, Issue: 4, page 325-332
  • ISSN: 0246-0211

How to cite

top

Kovalenko, V. F., and Semenov, Yu. A.. "Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials." Annales de l'I.H.P. Physique théorique 26.4 (1977): 325-332. <http://eudml.org/doc/75942>.

@article{Kovalenko1977,
author = {Kovalenko, V. F., Semenov, Yu. A.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {325-332},
publisher = {Gauthier-Villars},
title = {Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials},
url = {http://eudml.org/doc/75942},
volume = {26},
year = {1977},
}

TY - JOUR
AU - Kovalenko, V. F.
AU - Semenov, Yu. A.
TI - Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1977
PB - Gauthier-Villars
VL - 26
IS - 4
SP - 325
EP - 332
LA - eng
UR - http://eudml.org/doc/75942
ER -

References

top
  1. [1] B. Simon, Essential self-adjointness of Schrödinger operators with positive potentials. Math. Ann., t. 201, 1973, p. 211-220. Zbl0234.47027MR337215
  2. [2] Yu.A. Semenov, On the Lie-Trotter theorems in Lp-spaces. Preprint, Kiev, 1972. 
  3. [3] W.G. Faris, Quadratic forms and essential self-adjointness. Helv. Phys. Acta, t. 45, 1972, p. 1074-1088. MR383964
  4. [4] T. Kato, Schrödinger operators with singular potentials. Israël J. Math., t. 13, 1972, p. 135-148. Zbl0246.35025MR333833
  5. [5] H. Kalf, J. Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in C∞0(Rn{0) . J. Funct. Anal., t. 10, 1972, p. 114-130. Zbl0229.35041MR350183
  6. [6] U.-W. Schmincke, Essential self-adjointness of a Schrödinger operator with strongly singular potential. Math. Z., t. 124, 1972, p. 47-50. Zbl0225.35037
  7. [7] B. Simon, Essential self-adjointness of Schrödinger operators with singular potentials. Arch. Rat. Mech. Anal., t. 52, 1973, p. 44-48. Zbl0277.47007MR338548
  8. [8] D.W. Robinson, Scattering theory with singular potentials. I. The two-body problem. Ann. I. H. P., t. 21, 1974, p. 185-215. MR377304
  9. [9] Yu.A. Semenov, Schrödinger operators with Lp-potentials (to appear). Zbl0346.47011
  10. [10] P. Ferrero, O. De Pazzis, D.W. Robinson, Scattering theory with singular potentials. II. The n-body problem and hard cores. Ann. I. H. P., t. 21, 1974, p. 217-231. MR377305
  11. [11] M. Combescure-Moulin and J. Ginibre, Essential self-adjointness of many particle Schrödinger Hamiltonians with singular two-body potentials. Ann. I. H. P., Vol. XIII, n° 3, 1975, p. 211-234. Zbl0343.47007MR389063
  12. [12] Yu.A. Semenov, On the problem of convergence of a bounded-below sequence of symmetric forms for the Schrödinger operator (to appear). Zbl0403.47017MR524023
  13. [13] E.B. Davies, Properties of the Green's functions of some Schrödinger operators. J. London Math. Soc., t. 7 (2), 1973, p. 483-491. Zbl0271.47003MR342847
  14. [14] R Wust, Generalisations of Rellich's theorem on perturbation of (essentially) self–adjoint operators. Math. Z., t. 119, 1971, p. 276-280. Zbl0228.47010MR282247

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.