Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials
V. F. Kovalenko; Yu. A. Semenov
Annales de l'I.H.P. Physique théorique (1977)
- Volume: 26, Issue: 4, page 325-332
- ISSN: 0246-0211
Access Full Article
topHow to cite
topKovalenko, V. F., and Semenov, Yu. A.. "Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials." Annales de l'I.H.P. Physique théorique 26.4 (1977): 325-332. <http://eudml.org/doc/75942>.
@article{Kovalenko1977,
author = {Kovalenko, V. F., Semenov, Yu. A.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {325-332},
publisher = {Gauthier-Villars},
title = {Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials},
url = {http://eudml.org/doc/75942},
volume = {26},
year = {1977},
}
TY - JOUR
AU - Kovalenko, V. F.
AU - Semenov, Yu. A.
TI - Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1977
PB - Gauthier-Villars
VL - 26
IS - 4
SP - 325
EP - 332
LA - eng
UR - http://eudml.org/doc/75942
ER -
References
top- [1] B. Simon, Essential self-adjointness of Schrödinger operators with positive potentials. Math. Ann., t. 201, 1973, p. 211-220. Zbl0234.47027MR337215
- [2] Yu.A. Semenov, On the Lie-Trotter theorems in Lp-spaces. Preprint, Kiev, 1972.
- [3] W.G. Faris, Quadratic forms and essential self-adjointness. Helv. Phys. Acta, t. 45, 1972, p. 1074-1088. MR383964
- [4] T. Kato, Schrödinger operators with singular potentials. Israël J. Math., t. 13, 1972, p. 135-148. Zbl0246.35025MR333833
- [5] H. Kalf, J. Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in C∞0(Rn{0) . J. Funct. Anal., t. 10, 1972, p. 114-130. Zbl0229.35041MR350183
- [6] U.-W. Schmincke, Essential self-adjointness of a Schrödinger operator with strongly singular potential. Math. Z., t. 124, 1972, p. 47-50. Zbl0225.35037
- [7] B. Simon, Essential self-adjointness of Schrödinger operators with singular potentials. Arch. Rat. Mech. Anal., t. 52, 1973, p. 44-48. Zbl0277.47007MR338548
- [8] D.W. Robinson, Scattering theory with singular potentials. I. The two-body problem. Ann. I. H. P., t. 21, 1974, p. 185-215. MR377304
- [9] Yu.A. Semenov, Schrödinger operators with Lp-potentials (to appear). Zbl0346.47011
- [10] P. Ferrero, O. De Pazzis, D.W. Robinson, Scattering theory with singular potentials. II. The n-body problem and hard cores. Ann. I. H. P., t. 21, 1974, p. 217-231. MR377305
- [11] M. Combescure-Moulin and J. Ginibre, Essential self-adjointness of many particle Schrödinger Hamiltonians with singular two-body potentials. Ann. I. H. P., Vol. XIII, n° 3, 1975, p. 211-234. Zbl0343.47007MR389063
- [12] Yu.A. Semenov, On the problem of convergence of a bounded-below sequence of symmetric forms for the Schrödinger operator (to appear). Zbl0403.47017MR524023
- [13] E.B. Davies, Properties of the Green's functions of some Schrödinger operators. J. London Math. Soc., t. 7 (2), 1973, p. 483-491. Zbl0271.47003MR342847
- [14] R Wust, Generalisations of Rellich's theorem on perturbation of (essentially) self–adjoint operators. Math. Z., t. 119, 1971, p. 276-280. Zbl0228.47010MR282247
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.