Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields

Mitya Boyarchenko[1]; Sergei Levendorski[2]

  • [1] University of Chicago Department of Mathematics Chicago, IL 60637 (USA)
  • [2] University of Texas Department of Economics Austin, TX (USA)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 6, page 1827-1901
  • ISSN: 0373-0956

Abstract

top
We present a pair of conjectural formulas that compute the leading term of the spectral asymptotics of a Schrödinger operator on L 2 ( n ) with quasi-homogeneous polynomial magnetic and electric fields. The construction is based on the orbit method due to Kirillov. It makes sense for any nilpotent Lie algebra and is related to the geometry of coadjoint orbits, as well as to the growth properties of certain “algebraic integrals,” studied by Nilsson. By using the direct variational method, we prove that the formulas give the correct answer not only in the “regular” cases where the classical formulas of Weyl or Colin de Verdière are applicable but in many “irregular” cases, with different types of degeneration of potentials.

How to cite

top

Boyarchenko, Mitya, and Levendorski, Sergei. "Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields." Annales de l’institut Fourier 56.6 (2006): 1827-1901. <http://eudml.org/doc/10193>.

@article{Boyarchenko2006,
abstract = {We present a pair of conjectural formulas that compute the leading term of the spectral asymptotics of a Schrödinger operator on $L^2(\mathbb\{R\}^n)$ with quasi-homogeneous polynomial magnetic and electric fields. The construction is based on the orbit method due to Kirillov. It makes sense for any nilpotent Lie algebra and is related to the geometry of coadjoint orbits, as well as to the growth properties of certain “algebraic integrals,” studied by Nilsson. By using the direct variational method, we prove that the formulas give the correct answer not only in the “regular” cases where the classical formulas of Weyl or Colin de Verdière are applicable but in many “irregular” cases, with different types of degeneration of potentials.},
affiliation = {University of Chicago Department of Mathematics Chicago, IL 60637 (USA); University of Texas Department of Economics Austin, TX (USA)},
author = {Boyarchenko, Mitya, Levendorski, Sergei},
journal = {Annales de l’institut Fourier},
keywords = {Schrödinger operators; spectral asymptotics; orbit method; nilpotent Lie algebras},
language = {eng},
number = {6},
pages = {1827-1901},
publisher = {Association des Annales de l’institut Fourier},
title = {Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields},
url = {http://eudml.org/doc/10193},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Boyarchenko, Mitya
AU - Levendorski, Sergei
TI - Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1827
EP - 1901
AB - We present a pair of conjectural formulas that compute the leading term of the spectral asymptotics of a Schrödinger operator on $L^2(\mathbb{R}^n)$ with quasi-homogeneous polynomial magnetic and electric fields. The construction is based on the orbit method due to Kirillov. It makes sense for any nilpotent Lie algebra and is related to the geometry of coadjoint orbits, as well as to the growth properties of certain “algebraic integrals,” studied by Nilsson. By using the direct variational method, we prove that the formulas give the correct answer not only in the “regular” cases where the classical formulas of Weyl or Colin de Verdière are applicable but in many “irregular” cases, with different types of degeneration of potentials.
LA - eng
KW - Schrödinger operators; spectral asymptotics; orbit method; nilpotent Lie algebras
UR - http://eudml.org/doc/10193
ER -

References

top
  1. D. Arnal, J.-C. Cortet, Répresentations * des groupes exponentiels, J. Funct. Anal. 92 (1990), 103-135 Zbl0726.22011MR1064689
  2. P. Bernat, C. Conze, M. Duflo, N. Lévy-Nahas, M. Rais, P. Renouard, M. Vzationergne, Représentations des groupes de Lie résolubles, Monographies (1972), Soc. Math. de France Zbl0248.22012
  3. P. Bonnet, Paramétrisation du dual d’une algèbre de Lie nilpotente, Ann. Inst. Fourier 38 (1988), 169-197 Zbl0618.22004MR976688
  4. M. Boyarchenko, S. Levendorskiĭ, Generalizations of the classical Weyl and Colin de Verdière’s formulas and the orbit method, Proc. Natl. Acad. Sci. USA 102 (2005), 5663-5668 Zbl05169142MR2142891
  5. Y. Colin de Verdière, L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys. 105 (1986), 327-335 Zbl0612.35102MR849211
  6. H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger operators with applications to quantum mechanics and global geometry, (1985), Springer-Verlag, Berlin, New York, Heidelberg, London, Paris, Tokyo Zbl0619.47005
  7. C. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206 Zbl0526.35080MR707957
  8. C. Gordon, D. Webb, S. Wolpert, One cannot hear the shape of a drum, Bull. Amer. Math. Soc. 27 (1992), 134-138 Zbl0756.58049MR1136137
  9. D. Gurarie, Non-classical eigenvalue asymptotics for operators of Schrödinger type, Bull. Am. Math. Soc. 15 (1986), 233-237 Zbl0628.35076MR854562
  10. B. Helffer, A. Mohamed, Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier, Grenoble 38 (1988), 95-112 Zbl0638.47047MR949012
  11. B. Helffer, J. Nourrigat, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, (1985), Progress in Math., Boston Zbl0568.35003MR897103
  12. L. Hörmander, The analysis of differential operators. 3, (1985), Springer-Verlag, Berlin, New York, Heidelberg Zbl0601.35001
  13. V. Ivriǐ, Estimate for the number of negative eigenvalues of the Schrödinger operator with intense field, Journées Équations aux Dérivées partielles de Saint-Jean-de-Monts (1987), Soc. Math. France Zbl0637.35063
  14. Mark Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1-23 Zbl0139.05603MR201237
  15. A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), 57-110 Zbl0106.25001MR142001
  16. N. V. Krylov, Introduction to the theory of diffusion processes, Translations of Mathematical Monographs (1995), American Mathematical Society, Providence, RI Zbl0844.60050MR1311478
  17. S. Z. Levendorskiǐ, Non-classical spectral asymptotics, Russian Math. Surveys 43 (1988), 123-157 Zbl0671.35064
  18. S. Z. Levendorskiǐ, Asymptotic distribution of eigenvalues of differential operators, (1990), Dordrecht: Kluwer Academic Publishers Zbl0721.35049MR1079317
  19. S. Z. Levendorskiǐ, Degenerate elliptic equations, (1993), Dordrecht: Kluwer Academic Publishers Zbl0786.35063MR1247957
  20. S. Z. Levendorskiǐ, Spectral properties of Schrödinger operators with irregular magnetic potentials, for a spin 1 2 particle, J. Math. Anal. Appl. 216 (1997), 48-68 Zbl0902.35076MR1487252
  21. P. Levy-Bruhl, A. Mohamed, J. Nourrigat, Spectral theory and representations of nilpotent groups, Bull. Amer. Math. Soc. 26 (1992), 299-303 Zbl0749.35030MR1129314
  22. D. Manchon, Formule de Weyl pour les groupes de Lie nilpotents, J. Reine Angew. Math. 418 (1991), 77-129 Zbl0721.22004MR1111202
  23. D. Manchon, Weyl symbolic calculus on any Lie group, Acta Appl. Math. 30 (1993), 159-186 Zbl0779.22005MR1204731
  24. D. Manchon, Opérateurs pseudodifférentiels et représentations unitaires des groupes de Lie, Bull. Soc. Math. France 123 (1995), 117-138 Zbl0826.22009MR1330790
  25. D. Manchon, Distributions à support compact et représentations unitaires, J. Lie Theory 9 (1999), 403-424 Zbl1012.22024MR1718231
  26. A. Mohamed, J. Nourrigat, Encadrement du N ( λ ) pour des opérateurs de Schrödinger avec champ magnétique, J. Math. Pures Appl. 70 (1991), 87-99 Zbl0725.35068MR1091921
  27. N. Nilsson, Asymptotic estimates for spectral functions connected with hypoelliptic differential operators, Ark. Mat. 5 (1965), 527-540 Zbl0144.36302MR218931
  28. N. Nilsson, Some growth and ramification properties of certain integrals on algebraic manifolds, Ark. Mat. 5 (1965), 463-476 Zbl0168.42004MR175904
  29. N. V. Pedersen, On the symplectic structure of coadjoint orbits of (solvable) Lie groups and applications, part I, Math. Ann. 281 (1988), 633-669 Zbl0629.22004MR958263
  30. L. Pukanszky, On the theory of exponential groups, Trans. Amer. Math. Soc. 126 (1967), 487-507 Zbl0207.33605MR209403
  31. L. Pukanszky, Unitary representations of solvable Lie groups, Ann. Sci. École Norm. Sup. (4) (1971), 457-608 Zbl0238.22010MR439985
  32. D. Robert, Comportement asymptotique des valeurs propres d’opérateurs de type Schrödinger à potentiel “dégénéré”, J. Math. Pures Appl. 61 (1982), 275-300 Zbl0511.35069MR690397
  33. G. V. Rozenbljum, Asymptotic behavior of the eigenvalues of the Schrödinger operator, Mat. Sb. (N.S.) 93 (1974), 347-367, 487 Zbl0304.35070MR361470
  34. G. V. Rozenbljum, M. Z. Solomyak, M. A. Shubin, Spectral theory of differential operators, Contemporary problems of mathematics 64 (1989), Itogi Nauki i Tekhniki VINITI, Moscow: VINITI Zbl0715.35057MR1033500
  35. B. Simon, Nonclassical eigenvalue asymptotics, J. Funct.Anal. 53 (1983), 84-98 Zbl0529.35064MR715548
  36. M. Z. Solomyak, Asymptotics of the spectrum of the Schrödinger operator with non-regular homogeneous potential, Math. USSR Sbornik 55 (1986), 19-37 Zbl0657.35099
  37. H. Tamura, Asymptotic distribution of eigenvalues for Schrödinger operators with magnetic fields, Nagoya Math. J. 105 (1987), 49-69 Zbl0623.35048MR881008
  38. V. N. Tulovskiǐ, M. A. Shubin, The asymptotic distribution of the eigenvalues of pseudodifferential operators in R n , Mat. Sb. (N.S.) 92 (1973), 571-588, 648 Zbl0295.35068MR331131
  39. M. Vergne, La structure de Poisson sur l’algèbre symétrique d’une algèbre de Lie nilpotente, Bull. SMF 100 (1972), 301-335 Zbl0256.17002MR379752

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.