Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields
Mitya Boyarchenko[1]; Sergei Levendorski[2]
- [1] University of Chicago Department of Mathematics Chicago, IL 60637 (USA)
- [2] University of Texas Department of Economics Austin, TX (USA)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 6, page 1827-1901
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- D. Arnal, J.-C. Cortet, Répresentations des groupes exponentiels, J. Funct. Anal. 92 (1990), 103-135 Zbl0726.22011MR1064689
- P. Bernat, C. Conze, M. Duflo, N. Lévy-Nahas, M. Rais, P. Renouard, M. Vzationergne, Représentations des groupes de Lie résolubles, Monographies (1972), Soc. Math. de France Zbl0248.22012
- P. Bonnet, Paramétrisation du dual d’une algèbre de Lie nilpotente, Ann. Inst. Fourier 38 (1988), 169-197 Zbl0618.22004MR976688
- M. Boyarchenko, S. Levendorskiĭ, Generalizations of the classical Weyl and Colin de Verdière’s formulas and the orbit method, Proc. Natl. Acad. Sci. USA 102 (2005), 5663-5668 Zbl05169142MR2142891
- Y. Colin de Verdière, L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys. 105 (1986), 327-335 Zbl0612.35102MR849211
- H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger operators with applications to quantum mechanics and global geometry, (1985), Springer-Verlag, Berlin, New York, Heidelberg, London, Paris, Tokyo Zbl0619.47005
- C. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206 Zbl0526.35080MR707957
- C. Gordon, D. Webb, S. Wolpert, One cannot hear the shape of a drum, Bull. Amer. Math. Soc. 27 (1992), 134-138 Zbl0756.58049MR1136137
- D. Gurarie, Non-classical eigenvalue asymptotics for operators of Schrödinger type, Bull. Am. Math. Soc. 15 (1986), 233-237 Zbl0628.35076MR854562
- B. Helffer, A. Mohamed, Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier, Grenoble 38 (1988), 95-112 Zbl0638.47047MR949012
- B. Helffer, J. Nourrigat, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, (1985), Progress in Math., Boston Zbl0568.35003MR897103
- L. Hörmander, The analysis of differential operators. 3, (1985), Springer-Verlag, Berlin, New York, Heidelberg Zbl0601.35001
- V. Ivriǐ, Estimate for the number of negative eigenvalues of the Schrödinger operator with intense field, Journées Équations aux Dérivées partielles de Saint-Jean-de-Monts (1987), Soc. Math. France Zbl0637.35063
- Mark Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1-23 Zbl0139.05603MR201237
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), 57-110 Zbl0106.25001MR142001
- N. V. Krylov, Introduction to the theory of diffusion processes, Translations of Mathematical Monographs (1995), American Mathematical Society, Providence, RI Zbl0844.60050MR1311478
- S. Z. Levendorskiǐ, Non-classical spectral asymptotics, Russian Math. Surveys 43 (1988), 123-157 Zbl0671.35064
- S. Z. Levendorskiǐ, Asymptotic distribution of eigenvalues of differential operators, (1990), Dordrecht: Kluwer Academic Publishers Zbl0721.35049MR1079317
- S. Z. Levendorskiǐ, Degenerate elliptic equations, (1993), Dordrecht: Kluwer Academic Publishers Zbl0786.35063MR1247957
- S. Z. Levendorskiǐ, Spectral properties of Schrödinger operators with irregular magnetic potentials, for a spin particle, J. Math. Anal. Appl. 216 (1997), 48-68 Zbl0902.35076MR1487252
- P. Levy-Bruhl, A. Mohamed, J. Nourrigat, Spectral theory and representations of nilpotent groups, Bull. Amer. Math. Soc. 26 (1992), 299-303 Zbl0749.35030MR1129314
- D. Manchon, Formule de Weyl pour les groupes de Lie nilpotents, J. Reine Angew. Math. 418 (1991), 77-129 Zbl0721.22004MR1111202
- D. Manchon, Weyl symbolic calculus on any Lie group, Acta Appl. Math. 30 (1993), 159-186 Zbl0779.22005MR1204731
- D. Manchon, Opérateurs pseudodifférentiels et représentations unitaires des groupes de Lie, Bull. Soc. Math. France 123 (1995), 117-138 Zbl0826.22009MR1330790
- D. Manchon, Distributions à support compact et représentations unitaires, J. Lie Theory 9 (1999), 403-424 Zbl1012.22024MR1718231
- A. Mohamed, J. Nourrigat, Encadrement du pour des opérateurs de Schrödinger avec champ magnétique, J. Math. Pures Appl. 70 (1991), 87-99 Zbl0725.35068MR1091921
- N. Nilsson, Asymptotic estimates for spectral functions connected with hypoelliptic differential operators, Ark. Mat. 5 (1965), 527-540 Zbl0144.36302MR218931
- N. Nilsson, Some growth and ramification properties of certain integrals on algebraic manifolds, Ark. Mat. 5 (1965), 463-476 Zbl0168.42004MR175904
- N. V. Pedersen, On the symplectic structure of coadjoint orbits of (solvable) Lie groups and applications, part I, Math. Ann. 281 (1988), 633-669 Zbl0629.22004MR958263
- L. Pukanszky, On the theory of exponential groups, Trans. Amer. Math. Soc. 126 (1967), 487-507 Zbl0207.33605MR209403
- L. Pukanszky, Unitary representations of solvable Lie groups, Ann. Sci. École Norm. Sup. (4) (1971), 457-608 Zbl0238.22010MR439985
- D. Robert, Comportement asymptotique des valeurs propres d’opérateurs de type Schrödinger à potentiel “dégénéré”, J. Math. Pures Appl. 61 (1982), 275-300 Zbl0511.35069MR690397
- G. V. Rozenbljum, Asymptotic behavior of the eigenvalues of the Schrödinger operator, Mat. Sb. (N.S.) 93 (1974), 347-367, 487 Zbl0304.35070MR361470
- G. V. Rozenbljum, M. Z. Solomyak, M. A. Shubin, Spectral theory of differential operators, Contemporary problems of mathematics 64 (1989), Itogi Nauki i Tekhniki VINITI, Moscow: VINITI Zbl0715.35057MR1033500
- B. Simon, Nonclassical eigenvalue asymptotics, J. Funct.Anal. 53 (1983), 84-98 Zbl0529.35064MR715548
- M. Z. Solomyak, Asymptotics of the spectrum of the Schrödinger operator with non-regular homogeneous potential, Math. USSR Sbornik 55 (1986), 19-37 Zbl0657.35099
- H. Tamura, Asymptotic distribution of eigenvalues for Schrödinger operators with magnetic fields, Nagoya Math. J. 105 (1987), 49-69 Zbl0623.35048MR881008
- V. N. Tulovskiǐ, M. A. Shubin, The asymptotic distribution of the eigenvalues of pseudodifferential operators in , Mat. Sb. (N.S.) 92 (1973), 571-588, 648 Zbl0295.35068MR331131
- M. Vergne, La structure de Poisson sur l’algèbre symétrique d’une algèbre de Lie nilpotente, Bull. SMF 100 (1972), 301-335 Zbl0256.17002MR379752