Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields
Mitya Boyarchenko[1]; Sergei Levendorski[2]
- [1] University of Chicago Department of Mathematics Chicago, IL 60637 (USA)
- [2] University of Texas Department of Economics Austin, TX (USA)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 6, page 1827-1901
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBoyarchenko, Mitya, and Levendorski, Sergei. "Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields." Annales de l’institut Fourier 56.6 (2006): 1827-1901. <http://eudml.org/doc/10193>.
@article{Boyarchenko2006,
abstract = {We present a pair of conjectural formulas that compute the leading term of the spectral asymptotics of a Schrödinger operator on $L^2(\mathbb\{R\}^n)$ with quasi-homogeneous polynomial magnetic and electric fields. The construction is based on the orbit method due to Kirillov. It makes sense for any nilpotent Lie algebra and is related to the geometry of coadjoint orbits, as well as to the growth properties of certain “algebraic integrals,” studied by Nilsson. By using the direct variational method, we prove that the formulas give the correct answer not only in the “regular” cases where the classical formulas of Weyl or Colin de Verdière are applicable but in many “irregular” cases, with different types of degeneration of potentials.},
affiliation = {University of Chicago Department of Mathematics Chicago, IL 60637 (USA); University of Texas Department of Economics Austin, TX (USA)},
author = {Boyarchenko, Mitya, Levendorski, Sergei},
journal = {Annales de l’institut Fourier},
keywords = {Schrödinger operators; spectral asymptotics; orbit method; nilpotent Lie algebras},
language = {eng},
number = {6},
pages = {1827-1901},
publisher = {Association des Annales de l’institut Fourier},
title = {Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields},
url = {http://eudml.org/doc/10193},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Boyarchenko, Mitya
AU - Levendorski, Sergei
TI - Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1827
EP - 1901
AB - We present a pair of conjectural formulas that compute the leading term of the spectral asymptotics of a Schrödinger operator on $L^2(\mathbb{R}^n)$ with quasi-homogeneous polynomial magnetic and electric fields. The construction is based on the orbit method due to Kirillov. It makes sense for any nilpotent Lie algebra and is related to the geometry of coadjoint orbits, as well as to the growth properties of certain “algebraic integrals,” studied by Nilsson. By using the direct variational method, we prove that the formulas give the correct answer not only in the “regular” cases where the classical formulas of Weyl or Colin de Verdière are applicable but in many “irregular” cases, with different types of degeneration of potentials.
LA - eng
KW - Schrödinger operators; spectral asymptotics; orbit method; nilpotent Lie algebras
UR - http://eudml.org/doc/10193
ER -
References
top- D. Arnal, J.-C. Cortet, Répresentations des groupes exponentiels, J. Funct. Anal. 92 (1990), 103-135 Zbl0726.22011MR1064689
- P. Bernat, C. Conze, M. Duflo, N. Lévy-Nahas, M. Rais, P. Renouard, M. Vzationergne, Représentations des groupes de Lie résolubles, Monographies (1972), Soc. Math. de France Zbl0248.22012
- P. Bonnet, Paramétrisation du dual d’une algèbre de Lie nilpotente, Ann. Inst. Fourier 38 (1988), 169-197 Zbl0618.22004MR976688
- M. Boyarchenko, S. Levendorskiĭ, Generalizations of the classical Weyl and Colin de Verdière’s formulas and the orbit method, Proc. Natl. Acad. Sci. USA 102 (2005), 5663-5668 Zbl05169142MR2142891
- Y. Colin de Verdière, L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys. 105 (1986), 327-335 Zbl0612.35102MR849211
- H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger operators with applications to quantum mechanics and global geometry, (1985), Springer-Verlag, Berlin, New York, Heidelberg, London, Paris, Tokyo Zbl0619.47005
- C. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206 Zbl0526.35080MR707957
- C. Gordon, D. Webb, S. Wolpert, One cannot hear the shape of a drum, Bull. Amer. Math. Soc. 27 (1992), 134-138 Zbl0756.58049MR1136137
- D. Gurarie, Non-classical eigenvalue asymptotics for operators of Schrödinger type, Bull. Am. Math. Soc. 15 (1986), 233-237 Zbl0628.35076MR854562
- B. Helffer, A. Mohamed, Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier, Grenoble 38 (1988), 95-112 Zbl0638.47047MR949012
- B. Helffer, J. Nourrigat, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, (1985), Progress in Math., Boston Zbl0568.35003MR897103
- L. Hörmander, The analysis of differential operators. 3, (1985), Springer-Verlag, Berlin, New York, Heidelberg Zbl0601.35001
- V. Ivriǐ, Estimate for the number of negative eigenvalues of the Schrödinger operator with intense field, Journées Équations aux Dérivées partielles de Saint-Jean-de-Monts (1987), Soc. Math. France Zbl0637.35063
- Mark Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1-23 Zbl0139.05603MR201237
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), 57-110 Zbl0106.25001MR142001
- N. V. Krylov, Introduction to the theory of diffusion processes, Translations of Mathematical Monographs (1995), American Mathematical Society, Providence, RI Zbl0844.60050MR1311478
- S. Z. Levendorskiǐ, Non-classical spectral asymptotics, Russian Math. Surveys 43 (1988), 123-157 Zbl0671.35064
- S. Z. Levendorskiǐ, Asymptotic distribution of eigenvalues of differential operators, (1990), Dordrecht: Kluwer Academic Publishers Zbl0721.35049MR1079317
- S. Z. Levendorskiǐ, Degenerate elliptic equations, (1993), Dordrecht: Kluwer Academic Publishers Zbl0786.35063MR1247957
- S. Z. Levendorskiǐ, Spectral properties of Schrödinger operators with irregular magnetic potentials, for a spin particle, J. Math. Anal. Appl. 216 (1997), 48-68 Zbl0902.35076MR1487252
- P. Levy-Bruhl, A. Mohamed, J. Nourrigat, Spectral theory and representations of nilpotent groups, Bull. Amer. Math. Soc. 26 (1992), 299-303 Zbl0749.35030MR1129314
- D. Manchon, Formule de Weyl pour les groupes de Lie nilpotents, J. Reine Angew. Math. 418 (1991), 77-129 Zbl0721.22004MR1111202
- D. Manchon, Weyl symbolic calculus on any Lie group, Acta Appl. Math. 30 (1993), 159-186 Zbl0779.22005MR1204731
- D. Manchon, Opérateurs pseudodifférentiels et représentations unitaires des groupes de Lie, Bull. Soc. Math. France 123 (1995), 117-138 Zbl0826.22009MR1330790
- D. Manchon, Distributions à support compact et représentations unitaires, J. Lie Theory 9 (1999), 403-424 Zbl1012.22024MR1718231
- A. Mohamed, J. Nourrigat, Encadrement du pour des opérateurs de Schrödinger avec champ magnétique, J. Math. Pures Appl. 70 (1991), 87-99 Zbl0725.35068MR1091921
- N. Nilsson, Asymptotic estimates for spectral functions connected with hypoelliptic differential operators, Ark. Mat. 5 (1965), 527-540 Zbl0144.36302MR218931
- N. Nilsson, Some growth and ramification properties of certain integrals on algebraic manifolds, Ark. Mat. 5 (1965), 463-476 Zbl0168.42004MR175904
- N. V. Pedersen, On the symplectic structure of coadjoint orbits of (solvable) Lie groups and applications, part I, Math. Ann. 281 (1988), 633-669 Zbl0629.22004MR958263
- L. Pukanszky, On the theory of exponential groups, Trans. Amer. Math. Soc. 126 (1967), 487-507 Zbl0207.33605MR209403
- L. Pukanszky, Unitary representations of solvable Lie groups, Ann. Sci. École Norm. Sup. (4) (1971), 457-608 Zbl0238.22010MR439985
- D. Robert, Comportement asymptotique des valeurs propres d’opérateurs de type Schrödinger à potentiel “dégénéré”, J. Math. Pures Appl. 61 (1982), 275-300 Zbl0511.35069MR690397
- G. V. Rozenbljum, Asymptotic behavior of the eigenvalues of the Schrödinger operator, Mat. Sb. (N.S.) 93 (1974), 347-367, 487 Zbl0304.35070MR361470
- G. V. Rozenbljum, M. Z. Solomyak, M. A. Shubin, Spectral theory of differential operators, Contemporary problems of mathematics 64 (1989), Itogi Nauki i Tekhniki VINITI, Moscow: VINITI Zbl0715.35057MR1033500
- B. Simon, Nonclassical eigenvalue asymptotics, J. Funct.Anal. 53 (1983), 84-98 Zbl0529.35064MR715548
- M. Z. Solomyak, Asymptotics of the spectrum of the Schrödinger operator with non-regular homogeneous potential, Math. USSR Sbornik 55 (1986), 19-37 Zbl0657.35099
- H. Tamura, Asymptotic distribution of eigenvalues for Schrödinger operators with magnetic fields, Nagoya Math. J. 105 (1987), 49-69 Zbl0623.35048MR881008
- V. N. Tulovskiǐ, M. A. Shubin, The asymptotic distribution of the eigenvalues of pseudodifferential operators in , Mat. Sb. (N.S.) 92 (1973), 571-588, 648 Zbl0295.35068MR331131
- M. Vergne, La structure de Poisson sur l’algèbre symétrique d’une algèbre de Lie nilpotente, Bull. SMF 100 (1972), 301-335 Zbl0256.17002MR379752
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.