Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces

Bogdan Rzepecki

Commentationes Mathematicae Universitatis Carolinae (1982)

  • Volume: 023, Issue: 4, page 657-669
  • ISSN: 0010-2628

How to cite

top

Rzepecki, Bogdan. "Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces." Commentationes Mathematicae Universitatis Carolinae 023.4 (1982): 657-669. <http://eudml.org/doc/17211>.

@article{Rzepecki1982,
author = {Rzepecki, Bogdan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Euler polygons; measure of noncompactness; structure of solutions; Cauchy problem; Banach space},
language = {eng},
number = {4},
pages = {657-669},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces},
url = {http://eudml.org/doc/17211},
volume = {023},
year = {1982},
}

TY - JOUR
AU - Rzepecki, Bogdan
TI - Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1982
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 023
IS - 4
SP - 657
EP - 669
LA - eng
KW - Euler polygons; measure of noncompactness; structure of solutions; Cauchy problem; Banach space
UR - http://eudml.org/doc/17211
ER -

References

top
  1. A. AMBROSETTI, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. (1967) Zbl0174.46001MR0222426
  2. K. DEIMLING, Ordinary differential equations in Banach spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. (1977) Zbl0361.34050MR0463601
  3. K. GOEBEL E. RZYMOWSKI, An existence theorem for the equation x ' = f ( t , x ) in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 28 (1970), 367-370. (1970) MR0269957
  4. R. H. MARTIN, Jr., Nonlinear operators and differential equations in Banach spaces, John Wiley and Sons, New York 1976. (1976) Zbl0333.47023MR0492671
  5. B. RZEPECKI, On the method of Euler polygons for the differential equation in a locally convex space, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 411-414. (1975) Zbl0315.34078MR0374593
  6. B. RZEPECKI, Differential equations in linear spaces, PhD Thesis, University of Poznań, 1976. (1976) 
  7. B. RZEPECKI, A functional differential equation in a Banach space, Ann. Polon. Math. 36 (1979), 95-100. (1979) Zbl0414.34071MR0529310
  8. B. RZEPECKI, On measure of noncompactness in topological spaces, Comment. Math. Univ. Carolinae 23 (1982), 105-116. (1982) MR0653354
  9. S. SZUFLA, Structure of the solutions set of ordinary differential equations in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 141-144. (1973) Zbl0257.34064MR0333390
  10. S. SZUFLA, Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413. (1978) Zbl0384.34039MR0492684

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.