Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces
Commentationes Mathematicae Universitatis Carolinae (1982)
- Volume: 023, Issue: 4, page 657-669
- ISSN: 0010-2628
Access Full Article
topHow to cite
topReferences
top- A. AMBROSETTI, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. (1967) Zbl0174.46001MR0222426
- K. DEIMLING, Ordinary differential equations in Banach spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. (1977) Zbl0361.34050MR0463601
- K. GOEBEL E. RZYMOWSKI, An existence theorem for the equation in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 28 (1970), 367-370. (1970) MR0269957
- R. H. MARTIN, Jr., Nonlinear operators and differential equations in Banach spaces, John Wiley and Sons, New York 1976. (1976) Zbl0333.47023MR0492671
- B. RZEPECKI, On the method of Euler polygons for the differential equation in a locally convex space, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 411-414. (1975) Zbl0315.34078MR0374593
- B. RZEPECKI, Differential equations in linear spaces, PhD Thesis, University of Poznań, 1976. (1976)
- B. RZEPECKI, A functional differential equation in a Banach space, Ann. Polon. Math. 36 (1979), 95-100. (1979) Zbl0414.34071MR0529310
- B. RZEPECKI, On measure of noncompactness in topological spaces, Comment. Math. Univ. Carolinae 23 (1982), 105-116. (1982) MR0653354
- S. SZUFLA, Structure of the solutions set of ordinary differential equations in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 141-144. (1973) Zbl0257.34064MR0333390
- S. SZUFLA, Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413. (1978) Zbl0384.34039MR0492684