Application of Rothe's method to evolution integrodifferential systems

Marián Slodička

Commentationes Mathematicae Universitatis Carolinae (1989)

  • Volume: 030, Issue: 1, page 57-70
  • ISSN: 0010-2628

How to cite

top

Slodička, Marián. "Application of Rothe's method to evolution integrodifferential systems." Commentationes Mathematicae Universitatis Carolinae 030.1 (1989): 57-70. <http://eudml.org/doc/17697>.

@article{Slodička1989,
author = {Slodička, Marián},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {system; quasilinear integrodifferential equations; hyperbolic; parabolic; Rothe's method; method of lines; weak solution; rate of convergence},
language = {eng},
number = {1},
pages = {57-70},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Application of Rothe's method to evolution integrodifferential systems},
url = {http://eudml.org/doc/17697},
volume = {030},
year = {1989},
}

TY - JOUR
AU - Slodička, Marián
TI - Application of Rothe's method to evolution integrodifferential systems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1989
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 030
IS - 1
SP - 57
EP - 70
LA - eng
KW - system; quasilinear integrodifferential equations; hyperbolic; parabolic; Rothe's method; method of lines; weak solution; rate of convergence
UR - http://eudml.org/doc/17697
ER -

References

top
  1. Bermudez A., Viaño J. M., Etude de deux schemas numériques pour les équations de la thermoélasticité, RAIRO Anal. numérique 17 (1983), 121-136. (1983) MR0705448
  2. Dafermos C. M., On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rat. Mech. Anal. 29 (1968), 241-271. (1968) Zbl0183.37701MR0233539
  3. Duvaut G., Lions J. L., Inéquations en thermoelasticite et magnetohydrodynamique, Arch. Rat. Mech. Anal. 46 (1972), 241-279. (1972) Zbl0264.73027MR0346289
  4. Chou S. I., Wang C. C., Estimates of error in finite element approximate solutions to problems in linear thermoelasticity. Part 1. Computationally coupled numerical schemes, Arch. Rat. Mech. Anal. 76 (1981), 263-299. (1981) MR0636964
  5. Gajewski H., Gröger K., Zacharias K., Nichtiineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. (1974) 
  6. Kačur J., Method of Rothe in evolution equations, Teubner Texte zur Mathematik, 80, Leipzig, 1985. (1985) MR0834176
  7. Kačur J., Application of Rothe's method to evolution integrodifferential equations, J. reine angew. Math. 388 (1988), 73-105. (1988) Zbl0638.65098MR0944184
  8. Kačur J., Ženíšek A., Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems, Aplikace matematiky 31 (1986), 190-223. (1986) MR0837733
  9. Kufner R. E., John O., Fučík S., Function spaces, Academia, Prague, 1977. (1977) 
  10. Nickell R. E., Sackman J. L., Approximate solutions in linear coupled thermoelasticity, J. Appl. Mech. 35 (1968), 255-266. (1968) Zbl0159.55605
  11. Nickell R. E., Sackman J. L., Variational principles for linear coupled thermoelasticity, Q. Appl. Math. 26 (1968), 11-26. (1968) Zbl0165.27504MR0231576
  12. Rektorys K., The method of discretization in time and partial differential equations, D. Reidel Publ. Co 1982, Dordrecht - Boston - London. (1982) Zbl0522.65059MR0689712
  13. Ženíšek A., Finite element methods for coupled thermoelasticity and coupled consolidation of clay, RAIRO Anal. numerique 18 (1984), 183-205. (1984) MR0743885

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.