# Finite element methods for coupled thermoelasticity and coupled consolidation of clay

- Volume: 18, Issue: 2, page 183-205
- ISSN: 0764-583X

## Access Full Article

top## How to cite

topŽeníšek, Alexander. "Finite element methods for coupled thermoelasticity and coupled consolidation of clay." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 18.2 (1984): 183-205. <http://eudml.org/doc/193432>.

@article{Ženíšek1984,

author = {Ženíšek, Alexander},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {hyperbolic; elliptic; linear and coupled two-dimensional problems; dynamical thermoelasticity; quasistatical thermoelasticity; consolidation of clay; dependent variables being the displacements and temperature; displacements and pore water pressure; finite element triangulation of the Hermitean type; spatial domain; time domain is approximated by means of the Newmark method; existence; maximum rate of convergence},

language = {eng},

number = {2},

pages = {183-205},

publisher = {Dunod},

title = {Finite element methods for coupled thermoelasticity and coupled consolidation of clay},

url = {http://eudml.org/doc/193432},

volume = {18},

year = {1984},

}

TY - JOUR

AU - Ženíšek, Alexander

TI - Finite element methods for coupled thermoelasticity and coupled consolidation of clay

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 1984

PB - Dunod

VL - 18

IS - 2

SP - 183

EP - 205

LA - eng

KW - hyperbolic; elliptic; linear and coupled two-dimensional problems; dynamical thermoelasticity; quasistatical thermoelasticity; consolidation of clay; dependent variables being the displacements and temperature; displacements and pore water pressure; finite element triangulation of the Hermitean type; spatial domain; time domain is approximated by means of the Newmark method; existence; maximum rate of convergence

UR - http://eudml.org/doc/193432

ER -

## References

top- [1] D. AUBRY, J. C. HUJEUX, Special algorithms for elastoplastic consolidation with finite elements, Third International Conference on Numerical Methods in Geomechanics (Aachem), 2-6 April 1979.
- [2] B. A. BOLEY, J. H. WEINER, Theory of Thermal Stresses, John Wiley and Sons, New York-London-Sydney, 1960. Zbl0095.18407MR112414
- [3] J. R. BOOKER, A numerical method for the solution of Biot's consolidation theory, Quart. J. Mech. Appl. Math. 26, 1973, pp. 457-470. Zbl0267.65085
- [4] S.-I. CHOU, C.-C. WANG, Estimates of error in finite element approximate solutions to problems in linear thermoelasticity, Part I, Computationally coupled numerical schemes. Arch. Rational Mech. Anal. 76, 1981, pp. 263-299. Zbl0494.73071MR636964
- [5] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
- [6] T. DUPONT, L2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal. 10, 1973, pp. 880-889. Zbl0239.65087MR349045
- [7] G. FICHERA, Uniqueness, existence and estimate of the solution in the dynamical problem of thermodiffusion in an elastic solid, Arch. Mech. (Arch. Mech. Stos.) 26, 1974, pp. 903-920. Zbl0297.35015MR369959
- [8] C. JOHNSON, A finite element method for consolidation of clay, Research Report 77.05 R, Chalmers University of Technology, Göteborg, 1977. Zbl0392.73091
- [9] J. NEDOMA, F. LEITNER, Solution of problems of streess and strain of fully saturated porous media (In Czech.) Staveb, Cas. 27, 1979, pp. 23-27.
- [10] J. NEDOMA, The finite element solution of parabolic equations, Apl. Mat. 23, 1978, pp. 408-438. Zbl0427.65075MR508545
- [11] J. NEDOMA, The finite element solution of elliptic and parabolic equations using simplical isoparametric elements, RAIRO Anal. Numér. 13, 1979, pp. 257-289. Zbl0413.65080MR543935
- [12] M. ZLAMAL, The finite element method in domains with curved boundaries, Internat. J. Numer. Methods Engrg. 5, 1973, pp. 367-373. Zbl0254.65073MR395262
- [13] M. ZLAMAL, Curved elements in the finite element method, II. SIAM J. Numer. Anal. 11, 1974, pp. 347-362. Zbl0277.65064MR343660
- [14] M. ZLAMAL, Finite element methods for nonlinear parabolic equations, RAIRO Anal. Numér. 11, 1977, No. 1, pp. 93-107. Zbl0385.65049MR502073
- [15] A. ZENISEK, Curved triangular finite Cm-elements, Apl. Mat. 23, 1978, pp. 346-377. Zbl0404.35041MR502072
- [16] A. ZENISEK, The existence and uniqueness theorem in Biot's consolidation theory. (To appear in Apl. Mat. 29, 1984.) Zbl0557.35005MR747212

## Citations in EuDML Documents

top- Jiří V. Horák, On solvability of one special problem of coupled thermoelasticity. I. Classical boundary conditions and steady sources
- Marián Slodička, Application of Rothe's method to evolution integrodifferential systems
- Jozef Kačur, Alexander Ženíšek, Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems
- Helena Růžičková, Alexander Ženíšek, Finite elements methods for solving viscoelastic thin plates

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.