Finite element methods for coupled thermoelasticity and coupled consolidation of clay

Alexander Ženíšek

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1984)

  • Volume: 18, Issue: 2, page 183-205
  • ISSN: 0764-583X

How to cite

top

Ženíšek, Alexander. "Finite element methods for coupled thermoelasticity and coupled consolidation of clay." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 18.2 (1984): 183-205. <http://eudml.org/doc/193432>.

@article{Ženíšek1984,
author = {Ženíšek, Alexander},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {hyperbolic; elliptic; linear and coupled two-dimensional problems; dynamical thermoelasticity; quasistatical thermoelasticity; consolidation of clay; dependent variables being the displacements and temperature; displacements and pore water pressure; finite element triangulation of the Hermitean type; spatial domain; time domain is approximated by means of the Newmark method; existence; maximum rate of convergence},
language = {eng},
number = {2},
pages = {183-205},
publisher = {Dunod},
title = {Finite element methods for coupled thermoelasticity and coupled consolidation of clay},
url = {http://eudml.org/doc/193432},
volume = {18},
year = {1984},
}

TY - JOUR
AU - Ženíšek, Alexander
TI - Finite element methods for coupled thermoelasticity and coupled consolidation of clay
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1984
PB - Dunod
VL - 18
IS - 2
SP - 183
EP - 205
LA - eng
KW - hyperbolic; elliptic; linear and coupled two-dimensional problems; dynamical thermoelasticity; quasistatical thermoelasticity; consolidation of clay; dependent variables being the displacements and temperature; displacements and pore water pressure; finite element triangulation of the Hermitean type; spatial domain; time domain is approximated by means of the Newmark method; existence; maximum rate of convergence
UR - http://eudml.org/doc/193432
ER -

References

top
  1. [1] D. AUBRY, J. C. HUJEUX, Special algorithms for elastoplastic consolidation with finite elements, Third International Conference on Numerical Methods in Geomechanics (Aachem), 2-6 April 1979. 
  2. [2] B. A. BOLEY, J. H. WEINER, Theory of Thermal Stresses, John Wiley and Sons, New York-London-Sydney, 1960. Zbl0095.18407MR112414
  3. [3] J. R. BOOKER, A numerical method for the solution of Biot's consolidation theory, Quart. J. Mech. Appl. Math. 26, 1973, pp. 457-470. Zbl0267.65085
  4. [4] S.-I. CHOU, C.-C. WANG, Estimates of error in finite element approximate solutions to problems in linear thermoelasticity, Part I, Computationally coupled numerical schemes. Arch. Rational Mech. Anal. 76, 1981, pp. 263-299. Zbl0494.73071MR636964
  5. [5] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  6. [6] T. DUPONT, L2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal. 10, 1973, pp. 880-889. Zbl0239.65087MR349045
  7. [7] G. FICHERA, Uniqueness, existence and estimate of the solution in the dynamical problem of thermodiffusion in an elastic solid, Arch. Mech. (Arch. Mech. Stos.) 26, 1974, pp. 903-920. Zbl0297.35015MR369959
  8. [8] C. JOHNSON, A finite element method for consolidation of clay, Research Report 77.05 R, Chalmers University of Technology, Göteborg, 1977. Zbl0392.73091
  9. [9] J. NEDOMA, F. LEITNER, Solution of problems of streess and strain of fully saturated porous media (In Czech.) Staveb, Cas. 27, 1979, pp. 23-27. 
  10. [10] J. NEDOMA, The finite element solution of parabolic equations, Apl. Mat. 23, 1978, pp. 408-438. Zbl0427.65075MR508545
  11. [11] J. NEDOMA, The finite element solution of elliptic and parabolic equations using simplical isoparametric elements, RAIRO Anal. Numér. 13, 1979, pp. 257-289. Zbl0413.65080MR543935
  12. [12] M. ZLAMAL, The finite element method in domains with curved boundaries, Internat. J. Numer. Methods Engrg. 5, 1973, pp. 367-373. Zbl0254.65073MR395262
  13. [13] M. ZLAMAL, Curved elements in the finite element method, II. SIAM J. Numer. Anal. 11, 1974, pp. 347-362. Zbl0277.65064MR343660
  14. [14] M. ZLAMAL, Finite element methods for nonlinear parabolic equations, RAIRO Anal. Numér. 11, 1977, No. 1, pp. 93-107. Zbl0385.65049MR502073
  15. [15] A. ZENISEK, Curved triangular finite Cm-elements, Apl. Mat. 23, 1978, pp. 346-377. Zbl0404.35041MR502072
  16. [16] A. ZENISEK, The existence and uniqueness theorem in Biot's consolidation theory. (To appear in Apl. Mat. 29, 1984.) Zbl0557.35005MR747212

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.