Fractional integrals on spaces of homogeneous type
Vachtang Michailovič Kokilashvili; Alois Kufner
Commentationes Mathematicae Universitatis Carolinae (1989)
- Volume: 030, Issue: 3, page 511-523
- ISSN: 0010-2628
Access Full Article
topHow to cite
topKokilashvili, Vachtang Michailovič, and Kufner, Alois. "Fractional integrals on spaces of homogeneous type." Commentationes Mathematicae Universitatis Carolinae 030.3 (1989): 511-523. <http://eudml.org/doc/17765>.
@article{Kokilashvili1989,
author = {Kokilashvili, Vachtang Michailovič, Kufner, Alois},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fractional order integral; fractional maximal function},
language = {eng},
number = {3},
pages = {511-523},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fractional integrals on spaces of homogeneous type},
url = {http://eudml.org/doc/17765},
volume = {030},
year = {1989},
}
TY - JOUR
AU - Kokilashvili, Vachtang Michailovič
AU - Kufner, Alois
TI - Fractional integrals on spaces of homogeneous type
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1989
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 030
IS - 3
SP - 511
EP - 523
LA - eng
KW - fractional order integral; fractional maximal function
UR - http://eudml.org/doc/17765
ER -
References
top- Sobolev S. L., On a theorem in functional analysis, (Russian). Mat. Sb. 4 (88) (1938), 471-497; (English translation: Amer. Math. Soc. Tranasl. 3 (84) (1983), 39-88). (1938)
- Muckenhoupt B., Wheeden R. L., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 193 (1974), 281-274. (193) MR0340523
- Adams D., A trace inequality for generalized potentials, Studia Math. 48 (1973), 99-108. (1973) Zbl0237.46037MR0336316
- Coifman R., Weiss G., Analyse harmonique non-commutative sur certains espaces homogénes, Lecture Notes in Math. 242, Springer-Verlag, 1971. (1971) Zbl0224.43006MR0499948
- Kufner A., John O., Fučík S., Function spaces, Academia Prague. Noordhoff International Puhliahing, Leyden, 1977. (1977) MR0482102
- Stein E., Weiss G., Introduction to Fourier Analysis on Euclidian Spaces, Princeton University Press, Princeton, New Jersey, 1971. (1971) MR0304972
- Krasnosel'skii M. A., Rutickii Ya. B., Convex functions end Orlics spaces, Noordhoff, Groningen, 1961. (1961)
- Musielak J., Modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin - Heidelberg - New York - Tokyo, 1983. (1983) Zbl0599.46036MR0724434
- Calderon A. P., Inequalities for the maximal function relative to a metric, Studia Math. 67 (1976), 297-306. (1976) Zbl0341.44007MR0442579
- Macias R. A., Segovia C., A well behaved quasi-distance for spaces of homogeneous type, Trab. Mat. Inst. Argent. Mat. 32 (1981), 18p. (1981)
- Hedberg L., On certain convolution inequalities, Proc. Amer. Math. Soc 36 (1973), 505-610. (1973) Zbl0283.26003MR0312232
- Adams D., A note on Riesz potentials, Duke Math. J. 4 (1975), 765-777. (1975) Zbl0336.46038MR0458158
- O'Neil R., Les function conjugées et les intégrales fractionaires de la classe , C.R. Acad. Sc. Paris 263 (1966), 463-466. (1966)
- Welland G., Weighted norm inequalities for fractional integrals, Proc. Amer. Math. Soc. 61 (1975), 143-148. (1975) Zbl0306.26007MR0369641
- Kokilashvili V., Gabidsashvili M., Weighted inequalities for anisotropic potentials, (Russian). Dokl. Akad. Nauk. SSSR (1985), 1304-1306; English translation: Soviet Math. Dokl. 31 (1985), 583-585. (1985)
- Kokilashvili V., Krbec M., On the boundedness of anisotropic fractional maximal functions and potentials in weighted Orlicz spaces, (Russian). Trudy Tbilias. Mat. Inst. Rasmadze Akad. Nauk Grusin. SSR 82 (1986), 106-115. (1986) MR0884700
- Genebashvili S., Two weight norm inequalities for fractional maximal functions defined on homogeneous type spaces, (Russian) Soobehch. Akad. Nauk Grusin SSR (to appear).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.