Interior and superconvergence estimates for mixed methods for second order elliptic problems

Jr. J. Douglas; F. A. Milner

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1985)

  • Volume: 19, Issue: 3, page 397-428
  • ISSN: 0764-583X

How to cite

top

J. Douglas, Jr., and Milner, F. A.. "Interior and superconvergence estimates for mixed methods for second order elliptic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.3 (1985): 397-428. <http://eudml.org/doc/193453>.

@article{J1985,
author = {J. Douglas, Jr., Milner, F. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {interior error estimates; mixed finite element methods; semi-linear; second order; Sobolev spaces; superconvergence},
language = {eng},
number = {3},
pages = {397-428},
publisher = {Dunod},
title = {Interior and superconvergence estimates for mixed methods for second order elliptic problems},
url = {http://eudml.org/doc/193453},
volume = {19},
year = {1985},
}

TY - JOUR
AU - J. Douglas, Jr.
AU - Milner, F. A.
TI - Interior and superconvergence estimates for mixed methods for second order elliptic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 3
SP - 397
EP - 428
LA - eng
KW - interior error estimates; mixed finite element methods; semi-linear; second order; Sobolev spaces; superconvergence
UR - http://eudml.org/doc/193453
ER -

References

top
  1. [1] J. H. BRAMBLE and A. H. SCHATZ, Estimates for spline projections, R.A.I.R.O., Anal. numér., 10 (1976), pp. 5-37. Zbl0343.65045MR436620
  2. [2] Higher order local accuracy by averaging in the finite element method, Math, of Comp., 31 (1977), pp. 94-111. Zbl0353.65064MR431744
  3. [3] J. Jr. DOUGLAS, and J. E. ROBERTS, Global estimates for mixed methods for secondorder elliptic problems, Math, of Comp., 44 (1985), pp. 39-52. Zbl0624.65109MR771029
  4. [4] J. L. LIONS and E. MAGENES, Non homogeneous boundary value problems and applications, I, Springer-Verlag, Berlin, 1970. Zbl0223.35039
  5. [5] F. A. MILNER, Mixed finite element methods for quasi linear second order elliptic problems, Math, of Comp., 44 (1985), pp. 303-320. Zbl0567.65079MR777266
  6. [6] J. C. NEDELEC, Mixed finite elements in R 3 , Numer. Math., 35 (1980), pp. 315-341. Zbl0419.65069MR592160
  7. [7] J. A. NITSCHE and A. H. SCHATZ, Interior estimates for Ritz-Galerkin methods, Math, of Comp., 28 (1974), pp. 937-958. Zbl0298.65071MR373325
  8. [8] P. A. RAVIART and J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, in Proceedings of a Conference on Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics 606, Springer-Verlag, Berlin, 1977, pp. 292-315. Zbl0362.65089MR483555
  9. [9] R. SCHOLZ, L -convergence of saddle-point approximations for second order problems, R.A.I.R.O., Anal, numér., 11 (1977), pp. 209-216. Zbl0356.35026MR448942
  10. [10] G. STAMPACCHIA, Equations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Université de Montréal, Montréal, 1966. Zbl0151.15501MR251373
  11. [11] J. M. THOMAS, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes,Université P.-et-M. Curie, Paris, 1977. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.