Interior and superconvergence estimates for mixed methods for second order elliptic problems

Jr. J. Douglas; F. A. Milner

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1985)

  • Volume: 19, Issue: 3, page 397-428
  • ISSN: 0764-583X

How to cite

top

J. Douglas, Jr., and Milner, F. A.. "Interior and superconvergence estimates for mixed methods for second order elliptic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.3 (1985): 397-428. <http://eudml.org/doc/193453>.

@article{J1985,
author = {J. Douglas, Jr., Milner, F. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {interior error estimates; mixed finite element methods; semi-linear; second order; Sobolev spaces; superconvergence},
language = {eng},
number = {3},
pages = {397-428},
publisher = {Dunod},
title = {Interior and superconvergence estimates for mixed methods for second order elliptic problems},
url = {http://eudml.org/doc/193453},
volume = {19},
year = {1985},
}

TY - JOUR
AU - J. Douglas, Jr.
AU - Milner, F. A.
TI - Interior and superconvergence estimates for mixed methods for second order elliptic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 3
SP - 397
EP - 428
LA - eng
KW - interior error estimates; mixed finite element methods; semi-linear; second order; Sobolev spaces; superconvergence
UR - http://eudml.org/doc/193453
ER -

References

top
  1. [1] J. H. BRAMBLE and A. H. SCHATZ, Estimates for spline projections, R.A.I.R.O., Anal. numér., 10 (1976), pp. 5-37. Zbl0343.65045MR436620
  2. [2] Higher order local accuracy by averaging in the finite element method, Math, of Comp., 31 (1977), pp. 94-111. Zbl0353.65064MR431744
  3. [3] J. Jr. DOUGLAS, and J. E. ROBERTS, Global estimates for mixed methods for secondorder elliptic problems, Math, of Comp., 44 (1985), pp. 39-52. Zbl0624.65109MR771029
  4. [4] J. L. LIONS and E. MAGENES, Non homogeneous boundary value problems and applications, I, Springer-Verlag, Berlin, 1970. Zbl0223.35039
  5. [5] F. A. MILNER, Mixed finite element methods for quasi linear second order elliptic problems, Math, of Comp., 44 (1985), pp. 303-320. Zbl0567.65079MR777266
  6. [6] J. C. NEDELEC, Mixed finite elements in , Numer. Math., 35 (1980), pp. 315-341. Zbl0419.65069MR592160
  7. [7] J. A. NITSCHE and A. H. SCHATZ, Interior estimates for Ritz-Galerkin methods, Math, of Comp., 28 (1974), pp. 937-958. Zbl0298.65071MR373325
  8. [8] P. A. RAVIART and J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, in Proceedings of a Conference on Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics 606, Springer-Verlag, Berlin, 1977, pp. 292-315. Zbl0362.65089MR483555
  9. [9] R. SCHOLZ, -convergence of saddle-point approximations for second order problems, R.A.I.R.O., Anal, numér., 11 (1977), pp. 209-216. Zbl0356.35026MR448942
  10. [10] G. STAMPACCHIA, Equations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Université de Montréal, Montréal, 1966. Zbl0151.15501MR251373
  11. [11] J. M. THOMAS, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes,Université P.-et-M. Curie, Paris, 1977. 

NotesEmbed ?

top

You must be logged in to post comments.