Équations d'évolution linéaires du second ordre et méthodes multipas

E. Godlewski; A. Puech-Raoult

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1979)

  • Volume: 13, Issue: 4, page 329-353
  • ISSN: 0764-583X

How to cite

top

Godlewski, E., and Puech-Raoult, A.. "Équations d'évolution linéaires du second ordre et méthodes multipas." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 13.4 (1979): 329-353. <http://eudml.org/doc/193346>.

@article{Godlewski1979,
author = {Godlewski, E., Puech-Raoult, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {fully discrete scheme; second order evolution equation; linear multistep method; error bounds},
language = {fre},
number = {4},
pages = {329-353},
publisher = {Dunod},
title = {Équations d'évolution linéaires du second ordre et méthodes multipas},
url = {http://eudml.org/doc/193346},
volume = {13},
year = {1979},
}

TY - JOUR
AU - Godlewski, E.
AU - Puech-Raoult, A.
TI - Équations d'évolution linéaires du second ordre et méthodes multipas
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1979
PB - Dunod
VL - 13
IS - 4
SP - 329
EP - 353
LA - fre
KW - fully discrete scheme; second order evolution equation; linear multistep method; error bounds
UR - http://eudml.org/doc/193346
ER -

References

top
  1. 1. M. CROUZEIX, Approximation des équations d'évolution linéaires par des méthodes multipas. Étude Numérique des Grands Systèmes. Rencontres I.R.I.A.-Novosibirsk, juin 1976, Dunod, Paris. Zbl0389.65035
  2. 2. G. DAHLQUIST, On Accuracy and Unconditional StabiUty of Linear Multistep Methods for Second Order Differential Equations, B.I.T., vol. 18, 1978, p. 133-136. Zbl0378.65043MR499228
  3. 3. C. W. GEAR, The Stability of Numerical Methods for Second Order Ordinary Differential Equations, S.I.A.M. J. Num. Anal., vol. 15, 1978, p.188-197. Zbl0388.65030MR468191
  4. 4. E. GEKELER, Linear Multistep Methods and Galerkin Procedures for Initial Boundary Value Problems, S.I.A.M. J. Numer. Anal., vol. 13, 1976, p. 536-548. Zbl0335.65042MR431749
  5. 5. M. GERADIN, A Classification and Discussion of Integration Operators for Transient Structural Response, A.I.A.A. paper n° 74-105. 
  6. 6. E. GODLEWSKI et A. PUECH-RAOULT, Thèse de 3e cycle (à paraître). 
  7. 7. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, John Wiley and Sons, New York, London, 1962. Zbl0112.34901MR135729
  8. 8. P. S. JENSEN, Stability Analysis of Structures by Stiffly Stable Methods, Computer and Structures, vol. 4, p. 615-626. 
  9. 9. P. A. RAVIART, Multistep Methods and Parabolic Equations, Funct. Anal, and Num.Anal., Japan-France Seminar, Tokyo and Kyoto, 1976; H. FUJITA, éd., Japan Society for the Promotion of Science, 1978, p. 429-454. 
  10. 10. W. RUDIN, Real and Complex Analysis, McGraw-Hill Book Company, New York, 1966. Zbl0142.01701MR210528
  11. 11. G. STRANG et G. Fix, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, 1973. Zbl0356.65096MR443377

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.