Finite elements methods for solving viscoelastic thin plates

Helena Růžičková; Alexander Ženíšek

Aplikace matematiky (1984)

  • Volume: 29, Issue: 2, page 81-103
  • ISSN: 0862-7940

Abstract

top
The present paper deals with numerical solution of a viscoelastic plate. The discrete problem is defined by C 1 -elements and a linear multistep method. The effect of numerical integration is studied as well. The rate of cnvergence is established. Some examples are given in the conclusion.

How to cite

top

Růžičková, Helena, and Ženíšek, Alexander. "Finite elements methods for solving viscoelastic thin plates." Aplikace matematiky 29.2 (1984): 81-103. <http://eudml.org/doc/15337>.

@article{Růžičková1984,
abstract = {The present paper deals with numerical solution of a viscoelastic plate. The discrete problem is defined by $C^1$-elements and a linear multistep method. The effect of numerical integration is studied as well. The rate of cnvergence is established. Some examples are given in the conclusion.},
author = {Růžičková, Helena, Ženíšek, Alexander},
journal = {Aplikace matematiky},
keywords = {viscoelastic bending; thin plates; finite elements in space; finite difference in time; rate of convergence; viscoelastic bending; thin plates; finite elements in space; finite difference in time; rate of convergence},
language = {eng},
number = {2},
pages = {81-103},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finite elements methods for solving viscoelastic thin plates},
url = {http://eudml.org/doc/15337},
volume = {29},
year = {1984},
}

TY - JOUR
AU - Růžičková, Helena
AU - Ženíšek, Alexander
TI - Finite elements methods for solving viscoelastic thin plates
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 2
SP - 81
EP - 103
AB - The present paper deals with numerical solution of a viscoelastic plate. The discrete problem is defined by $C^1$-elements and a linear multistep method. The effect of numerical integration is studied as well. The rate of cnvergence is established. Some examples are given in the conclusion.
LA - eng
KW - viscoelastic bending; thin plates; finite elements in space; finite difference in time; rate of convergence; viscoelastic bending; thin plates; finite elements in space; finite difference in time; rate of convergence
UR - http://eudml.org/doc/15337
ER -

References

top
  1. K. Bell, 10.1002/nme.1620010108, Int. J. Numer. Meth. Engng. 1 (1969), 101-122. (1969) DOI10.1002/nme.1620010108
  2. J. H. Bramble M. Zlámal, Triangular elements in the finite element method, Math. Соmр. 24 (1970), 809-820. (1970) MR0282540
  3. J. Brilla, Visco-elastic bending of anisotropic plates, (in Slovak), Stav. Čas. 17 (1969), 153-175. (1969) 
  4. J. Brilla, Finite element method for quasiparabolic equations, in Proc. of the 4th symposium on basic problems of numer. math., Plzeň (1978), 25-36. (1978) Zbl0445.73060MR0566152
  5. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
  6. V. Girault P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin-Heidelberg-New York, 1979. (1979) MR0548867
  7. J. Hřebíček, Numerical analysis of the general biharmonic problem by the finite element method, Apl. mat. 27 (1982), 352-374. (1982) MR0674981
  8. V. Kolář J. Kratochvíl F. Leitner A. Ženíšek, Calculation of plane and Space Constructions by the Finite Element Method, (Czech). SNTL, Praha, 1979. (1979) 
  9. J. Kratochvíl A. Ženíšek M. Zlámal, 10.1002/nme.1620030409, Int. J. Numer. Meth. Engng. 3 (1971), 553 - 563. (1971) DOI10.1002/nme.1620030409
  10. J. Nedoma, The finite element solution of parabolic equations, Apl. mat. 23 (1978), 408-438. (1978) Zbl0427.65075MR0508545
  11. S. Turčok, Solution of quasiparabolic differential equations by finite element method, (in Slovak), Thesis, Komenský University Bratislava, (1978). (1978) 
  12. M. Zlámal, 10.1007/BF02161362, Numer. Math. 12 (1968), 394 - 409. (1968) MR0243753DOI10.1007/BF02161362
  13. M. Zlámal, Finite element methods for nonlinear parabolic equations, R.A.I.R.O. Numer. Anal. 11 (1977), 93-107. (1977) MR0502073
  14. A. Ženíšek, Curved triangular finite C m -elements, Apl. Mat. 23 (1978), 346-377. (1978) MR0502072
  15. A. Ženíšek, Discrete forms of Friedrichs' inequalities in the finite element method, R.A.I. R. O. Numer. Anal. 15 (1981), 265-286. (1981) Zbl0475.65072MR0631681
  16. A. Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay, (To appear in R.A.I.R.O. Numer. Anal. 18 (1984).) (1984) MR0743885
  17. E. Godlewski A. Puech-Raoult, Équations d'évolution linéaires du second ordre et méthodes multipas, R.A.I.R.O. Numer. Anal. 13 (1979), 329-353. (1979) MR0555383

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.