Une méthode d'éléments finis mixte pour les équations de Von Kármán

S. Kesavan

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1980)

  • Volume: 14, Issue: 2, page 149-173
  • ISSN: 0764-583X

How to cite

top

Kesavan, S.. "Une méthode d'éléments finis mixte pour les équations de Von Kármán." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 14.2 (1980): 149-173. <http://eudml.org/doc/193355>.

@article{Kesavan1980,
author = {Kesavan, S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed finite element; non-trivial solutions bifurcating from trivial solution of von Kármán equations; Kikuchi's method; Fredholm alternative problem; biharmonic equation; nonlinear problem},
language = {fre},
number = {2},
pages = {149-173},
publisher = {Dunod},
title = {Une méthode d'éléments finis mixte pour les équations de Von Kármán},
url = {http://eudml.org/doc/193355},
volume = {14},
year = {1980},
}

TY - JOUR
AU - Kesavan, S.
TI - Une méthode d'éléments finis mixte pour les équations de Von Kármán
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1980
PB - Dunod
VL - 14
IS - 2
SP - 149
EP - 173
LA - fre
KW - mixed finite element; non-trivial solutions bifurcating from trivial solution of von Kármán equations; Kikuchi's method; Fredholm alternative problem; biharmonic equation; nonlinear problem
UR - http://eudml.org/doc/193355
ER -

References

top
  1. 1. L BAUER et E REISS, Non Linear Buckling of Rectangular PlatesBuckhng of Rectangular Plates, SIAM, Num Anal, vol 13, 1965, p 603-627. 
  2. 2. F BREZZI, On the Existence, Uniqueness and Approximation of Saddle-PointProblems Arising from Lagrangian Multipliers, RAIRO , Analyse numérique,of R-2, 1974, p 129-151. Zbl0338.90047MR365287
  3. 3. F. BREZZI et P. A. RAVIART, Mixed Finite Element Methods for Fourth Order EllipticEquations, Rapport Interne, n° 9, École Polytechnique, Palaiseau, 1976. 
  4. 4. C. CANUTO, Eigenvalue Approximations by Mixed Methods, R.A.I.R.O., Analyse numérique, vol. 12, 1978, p. 27-50. Zbl0434.65032MR488712
  5. 5. P. G. CIARLET, TheFinite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  6. 6. P. G. CIARLET, Derivation of the von Karman Equations from Three-Dimensional Elasticity, Proceedings of the Fourth Conference on Basic Problems in Numerical Analysis, Plzen, 1978 (à paraître). Zbl0445.73043MR566153
  7. 7. P. G. CIARLET et P. A. RAVIART, A Mixed Finite Element Method for the Biharmonic Equation in Mathematical Aspects of 'Finite Eléments in Partial Differentiat Equations, C. DE BOOR, éd. 1974, p. 125-145. Zbl0337.65058MR657977
  8. 8. S. KESAVAN, Homogenization of Elliptic Eigenvalue Problems, Applied Mathematicsand Optimizalion. vol. 5, n° 2, 1979, p. 153-167. Zbl0415.35061MR533617
  9. 9. S. KESAVAN, La méthode de Kikuchi appliquée aux équations de von Karman, Numerische Mathematik, vol.32, 1979, p. 209-232. Zbl0395.73054MR529910
  10. 10. S. KESAVAN et M. VANNINATHAN, Sur une méthode d'éléments finis mixte pour l'équation biharmonique, R.A.I.R.O., Analyse numérique, vol. 11, n° 3, 1977, p. 255-270. Zbl0372.65039MR451777
  11. 11. F. KIKUCHI, An Iterative Finite Element Scheme for Bifurcation Analysis of Semi-Linear Elliptic Equations, Report n° 542, Institute of space and Aeronautical Science,Univ. of Tokyo, Japan, 1976. 
  12. 12. V. A. KONDRAT'EV, Boundary Value Problems for Elliptic Equations in Domains with Conical or Angular Points, Trudy Moskov. Mat.Obsc, vol. 16, 1967, p. 209-292. Zbl0162.16301MR226187
  13. 13. B. MERCIER et J. RAPPAZ, Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods, Rapport Interne, n° 33, École Polytechnique, Palaiseau, 1978. 
  14. 14. T. MIYOSHI, Finite Element Method for the Solution of Fourth Order Partial Differential Equations, Kumamoto J. Se. (Math.), vol.9, 1973, p. 87-116. Zbl0249.35007MR386298
  15. 15. R. RANNACHER, Non Conforming Finite Element Methods for Eigenvalue Problems in Linear Plate Theory, Preprint, n° 191, Univ. of Bonn, W. Germany, 1978. Zbl0394.65035
  16. 16. R. RANNACHER, On Non-Conforming and Mixed Finite Element Methods for Plate Bending Problems, Thelinear case, R.A.I.R.O., Analyse numérique (à paraître). Zbl0425.35042
  17. 17. R. SCHOLZ, Approximation von Sattelpunkten mit Finiten Elementen, Bonner Math.Schrifter, vol. 89, 1976, p. 53-66. Zbl0359.65096MR471377
  18. 18. G. STRANG et G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Inc. Englewood Cliffs, 1973. Zbl0356.65096MR443377

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.