A hybrid finite element method to compute the free vibration frequencies of a clamped plate
- Volume: 15, Issue: 2, page 101-118
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCanuto, Claudio. "A hybrid finite element method to compute the free vibration frequencies of a clamped plate." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 15.2 (1981): 101-118. <http://eudml.org/doc/193371>.
@article{Canuto1981,
author = {Canuto, Claudio},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {spectral problem; compact self-adjoint operator; complementary energy principle; saddle-point problem; duality theory; Lagrange multipliers; stress hybrid finite element; convergence; error estimates},
language = {eng},
number = {2},
pages = {101-118},
publisher = {Dunod},
title = {A hybrid finite element method to compute the free vibration frequencies of a clamped plate},
url = {http://eudml.org/doc/193371},
volume = {15},
year = {1981},
}
TY - JOUR
AU - Canuto, Claudio
TI - A hybrid finite element method to compute the free vibration frequencies of a clamped plate
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1981
PB - Dunod
VL - 15
IS - 2
SP - 101
EP - 118
LA - eng
KW - spectral problem; compact self-adjoint operator; complementary energy principle; saddle-point problem; duality theory; Lagrange multipliers; stress hybrid finite element; convergence; error estimates
UR - http://eudml.org/doc/193371
ER -
References
top- 1 P M. ANSELONE, Collectively Compact Operator Approximation Theory to Integral Equations, Prentice Hall, Englewood Cliffs, N.J., 1971. Zbl0228.47001MR443383
- 2 K. BRANDT, Calculation of vibration frequencies by a hybrid element method based on a generalized complementary energy principle, Int. J num. Meth. Engng., v. 12, 1977, pp. 231-246. Zbl0346.73054
- 3. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O , R-2, 1974, pp 129-151. Zbl0338.90047MR365287
- 4 F. BREZZI, Sur la méthode des éléments finis hybrides pour le problème biharmonique, Num. Math. v 24, 1975, pp. 103-131. Zbl0316.65029MR391538
- 5. F BREZZI and L. D. MARINI, On the numerical solution of plate bending problems by hybrid methods, R.A.I.R.O., R-3, 1975, pp. 5-50. Zbl0322.73048
- 6 C CANUTO, Eigenvalue approximations by mixed methods, R.A.I.R.O. Anal Num., v. 12, 1978, pp. 27-50 Zbl0434.65032MR488712
- 7. C. CANUTO, A finite element to interpolate symmetric tensors with divergence in (To appear on Calcolo). Zbl0508.65051
- 8. P G CIARLET, The finite element method for elliptic problems, North-Holland, Amsterdam-New York-Oxford, 1978. Zbl0383.65058MR520174
- 9. G. FICHERA, Numerical and Quantitative Analysis, Pitman, London-San Francisco-Melbourne, 1978. Zbl0384.65043MR519677
- 10. P. GRISVARD, Singularité des solutions du problème de Stokes dans un polygone (To appear)
- 11 W. G. KOLATA, Eigenvalue approximation by the finite element method : the method of Lagrange multipliers (To appear) Zbl0448.65067MR514810
- 12 V. A. KONDRAT'EV, Boundary problems for elliptic equations in domains with conical or angular points, Trans Moscow Math Soc., v 16, 1976, pp 227-313. Zbl0194.13405
- 13. B. MERCIER and J. RAPPAZ, Eigenvalue approximation via nonconforming and hybrid finite elements methods, Rapport Interne du Centre de Mathématiques Appliquées de l'École Polytechnique, n° 33, 1978
- 14. B. MERCIER, J. OSBORN, J. RAPPAZ and P.-A. RAVIART, Eigenvalue approximation by mixed and hybrid methods (To appear). Zbl0472.65080MR606505
- 15. T. H. H. PIANG and P. TONG, The basis of finite element methods for solid continua, Int. J. num. Meth. Engng., v. 1, 1969, pp. 3-28. Zbl0252.73052
- 16. J. RAPPAZ, Approximation of the spectrum of a non-compact operator given by the magnetohydrodynamic stability of a plasma, Num. Math., v. 28, 1977, pp. 15-24. Zbl0341.65044MR474800
- 17. J. RAPPAZ, Spectral approximation by finite elements of a problem of MHD-stability of a plasma, The Mathematics of Finite Elements and Applications III, MAFELAP 1978 (Ed. J. R. Whiteman), Academic Press, London-New York-San Francisco, 1979, pp. 311-318. Zbl0442.76087MR559307
- 18. G. STRANG and G. FIX, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973. Zbl0356.65096MR443377
- 19. B. TABARROK, A variational principle for the dynamic analysis of continua by hybrid finite element method, Int. J. Solids Struct., v. 7, 1971, pp. 251-268. Zbl0228.73053
- 20. R. A. TOUPIN, A variational principle for the mesh-type analysis of the mechanical system, Trans. Am. Soc. Mech. Engngs., v. 74, 1952, pp. 151-152. Zbl0047.17710MR51053
- 21. P. G. GILARDI (To appear).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.