On the approximation of the spectrum of the Stokes operator
Tunc Geveci; B. Daya Reddy; Howard T. Pearce
- Volume: 23, Issue: 1, page 129-136
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGeveci, Tunc, Reddy, B. Daya, and Pearce, Howard T.. "On the approximation of the spectrum of the Stokes operator." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.1 (1989): 129-136. <http://eudml.org/doc/193548>.
@article{Geveci1989,
author = {Geveci, Tunc, Reddy, B. Daya, Pearce, Howard T.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {spectrum; Stokes problem; eigenvalues; eigenfunctions; Stokes operator; Error estimates; mixed methods},
language = {eng},
number = {1},
pages = {129-136},
publisher = {Dunod},
title = {On the approximation of the spectrum of the Stokes operator},
url = {http://eudml.org/doc/193548},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Geveci, Tunc
AU - Reddy, B. Daya
AU - Pearce, Howard T.
TI - On the approximation of the spectrum of the Stokes operator
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 1
SP - 129
EP - 136
LA - eng
KW - spectrum; Stokes problem; eigenvalues; eigenfunctions; Stokes operator; Error estimates; mixed methods
UR - http://eudml.org/doc/193548
ER -
References
top- [1] K. J. BATHE, Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, Englewood Cliffs, N.J.
- [2] M. BERCOVIER, Perturbation of mixed variational problems : Application to mixed finite element methods, R.A.I.R.O. Anal. Num. 12 (1978), 211-236. Zbl0428.65059MR509973
- [3] C. CANUTO, Eigenvalue approximation by mixed methods, R.A.I.R.O. Anal. Num. 12 (1978), 25-50. Zbl0434.65032MR488712
- [4] C. CANUTO, A hybrid finite element to compute the free vibration frequencies of a clamped plate, R.A.I.R.O. Anal. Num. 15 (1981), 101-118. Zbl0462.73049MR618818
- [5] V. GIRAULT and P.-A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics 749, Springer-Verlag, 1979, New York, Heidelberg, Berlin. Zbl0413.65081MR548867
- [6] D. F. GRIFFITHS, Finite elements for incompressible flow, Math. Meth. in the Appl. Sci. 1 (1979), 16-31. Zbl0425.65061MR548403
- [7] D. F. GRIFFITHS, An approximately divergence-free 9-node velocity element (with variations) for incompressible flows, Int. J. Num. Meth. Fluids 1 (1981), 323-346. Zbl0469.76026MR633811
- [8] B. MERCIER, J. OSBORN, J. RAPPAZ and P.-A. RAVIART, Eigenvalue approximation of mixed and hybrid methods, Math. Compt. 36 (1981), 427-453. Zbl0472.65080MR606505
- [9] J. T. ODEN, N. KIKUCHI and Y. J. SONG, Penalty-finite element methods for the analysis of Stokesian flows, Comp. Meth. Appl. Mech. Eng. 31 (1982), 297-239. Zbl0478.76041MR677872
- [10] J. S. PETERSON, An application of mixed finite element methods to the stability of the incompressible Navier-Stokes equations, SIAM J. Sci. Stat. Comput. 4 (1983), 626-634. Zbl0526.76039MR725657
- [11] G. STRANG and G. F. FIX, An Analysis of the Finite Element Method, Prentice-Hall, 1973, Englewood Cliffs, N.J. Zbl0356.65096MR443377
- [12] R. TEMAM, Navier-Stokes Equations, North-Holland, 1979, Amsterdam, New York, Oxford. Zbl0426.35003
- [13] R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1983, Philadelphia. Zbl0833.35110MR764933
- [14] F. THOMASSET, Implementation of the Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1981, New York, Heidelberg, Berlin. Zbl0475.76036MR720192
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.