On the approximation of the spectrum of the Stokes operator

Tunc Geveci; B. Daya Reddy; Howard T. Pearce

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 1, page 129-136
  • ISSN: 0764-583X

How to cite

top

Geveci, Tunc, Reddy, B. Daya, and Pearce, Howard T.. "On the approximation of the spectrum of the Stokes operator." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.1 (1989): 129-136. <http://eudml.org/doc/193548>.

@article{Geveci1989,
author = {Geveci, Tunc, Reddy, B. Daya, Pearce, Howard T.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {spectrum; Stokes problem; eigenvalues; eigenfunctions; Stokes operator; Error estimates; mixed methods},
language = {eng},
number = {1},
pages = {129-136},
publisher = {Dunod},
title = {On the approximation of the spectrum of the Stokes operator},
url = {http://eudml.org/doc/193548},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Geveci, Tunc
AU - Reddy, B. Daya
AU - Pearce, Howard T.
TI - On the approximation of the spectrum of the Stokes operator
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 1
SP - 129
EP - 136
LA - eng
KW - spectrum; Stokes problem; eigenvalues; eigenfunctions; Stokes operator; Error estimates; mixed methods
UR - http://eudml.org/doc/193548
ER -

References

top
  1. [1] K. J. BATHE, Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, Englewood Cliffs, N.J. 
  2. [2] M. BERCOVIER, Perturbation of mixed variational problems : Application to mixed finite element methods, R.A.I.R.O. Anal. Num. 12 (1978), 211-236. Zbl0428.65059MR509973
  3. [3] C. CANUTO, Eigenvalue approximation by mixed methods, R.A.I.R.O. Anal. Num. 12 (1978), 25-50. Zbl0434.65032MR488712
  4. [4] C. CANUTO, A hybrid finite element to compute the free vibration frequencies of a clamped plate, R.A.I.R.O. Anal. Num. 15 (1981), 101-118. Zbl0462.73049MR618818
  5. [5] V. GIRAULT and P.-A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics 749, Springer-Verlag, 1979, New York, Heidelberg, Berlin. Zbl0413.65081MR548867
  6. [6] D. F. GRIFFITHS, Finite elements for incompressible flow, Math. Meth. in the Appl. Sci. 1 (1979), 16-31. Zbl0425.65061MR548403
  7. [7] D. F. GRIFFITHS, An approximately divergence-free 9-node velocity element (with variations) for incompressible flows, Int. J. Num. Meth. Fluids 1 (1981), 323-346. Zbl0469.76026MR633811
  8. [8] B. MERCIER, J. OSBORN, J. RAPPAZ and P.-A. RAVIART, Eigenvalue approximation of mixed and hybrid methods, Math. Compt. 36 (1981), 427-453. Zbl0472.65080MR606505
  9. [9] J. T. ODEN, N. KIKUCHI and Y. J. SONG, Penalty-finite element methods for the analysis of Stokesian flows, Comp. Meth. Appl. Mech. Eng. 31 (1982), 297-239. Zbl0478.76041MR677872
  10. [10] J. S. PETERSON, An application of mixed finite element methods to the stability of the incompressible Navier-Stokes equations, SIAM J. Sci. Stat. Comput. 4 (1983), 626-634. Zbl0526.76039MR725657
  11. [11] G. STRANG and G. F. FIX, An Analysis of the Finite Element Method, Prentice-Hall, 1973, Englewood Cliffs, N.J. Zbl0356.65096MR443377
  12. [12] R. TEMAM, Navier-Stokes Equations, North-Holland, 1979, Amsterdam, New York, Oxford. Zbl0426.35003
  13. [13] R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1983, Philadelphia. Zbl0833.35110MR764933
  14. [14] F. THOMASSET, Implementation of the Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1981, New York, Heidelberg, Berlin. Zbl0475.76036MR720192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.