Shape optimization in contact problems. Approximation and numerical realization

J. Haslinger; P. Neittaanmäki

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 2, page 269-291
  • ISSN: 0764-583X

How to cite

top

Haslinger, J., and Neittaanmäki, P.. "Shape optimization in contact problems. Approximation and numerical realization." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.2 (1987): 269-291. <http://eudml.org/doc/193503>.

@article{Haslinger1987,
author = {Haslinger, J., Neittaanmäki, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {optimal design; minimized total potential energy; shape optimization; contact surface; two dimensional elastic body unilaterally supported; rigid frictionless foundation; nonconvex; smooth minimization; linear constraints; nonlinear state problem; sensitivity analysis; variant of conjugate gradient method},
language = {eng},
number = {2},
pages = {269-291},
publisher = {Dunod},
title = {Shape optimization in contact problems. Approximation and numerical realization},
url = {http://eudml.org/doc/193503},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Haslinger, J.
AU - Neittaanmäki, P.
TI - Shape optimization in contact problems. Approximation and numerical realization
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 2
SP - 269
EP - 291
LA - eng
KW - optimal design; minimized total potential energy; shape optimization; contact surface; two dimensional elastic body unilaterally supported; rigid frictionless foundation; nonconvex; smooth minimization; linear constraints; nonlinear state problem; sensitivity analysis; variant of conjugate gradient method
UR - http://eudml.org/doc/193503
ER -

References

top
  1. [1] E. ATREK, R. H. GALLAGHER, K. M. RAGSDELL and O. C. ZIENKIEWICZ(eds.), New Directions in Optimum Structural Design, John Wüey and Sons, Chichester, 1984. Zbl0649.73039MR1602135
  2. [2] D. BEGIS and R. GLOWINSKI, Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal, Appl. Math. Optim., 2 (1975) pp.130-169. Zbl0323.90063MR443372
  3. [3] P. G. CIARLET, The Finite Element Method for Elliptic Problems, Amsterdam-New York-Oxford, North Holland, 1978, Zbl0383.65058MR520174
  4. [4] R. CORREA and A. SEEGER, Directional derivatives in minimax problems, Numer. Funct. Anal, and Optimiz. 7 (1984) pp.145-156. Zbl0566.49005MR767379
  5. [5] P. E. GILL, W. MURRAY and M. H. WRIGHT, Practical Optimization, Academic Press, London, 1981. Zbl0503.90062MR634376
  6. [6] J. HASLINGER, V. HORAK and P. NEITAANMÄKI, Shape optimization in contact problem with friction 8 (1985/86), pp. 557-587. Zbl0628.73123MR855444
  7. [7] J. HASLINGER and P. NEITTAANMÄKI, Penalty method in design of system governed by mixed Dirichlet-Signorini boundary value problem, Ann.Fac. Sci. Toulouse, Vol. V (1983) pp.199-216. Zbl0547.49004MR747190
  8. [8] J. HASLINGER and P. NEITTAANMÄKI, On optimal shape design of Systems governed by mixed Dirichlet-Signorini boundary value problem, Math. Meth. Appl. Sci. 8 (1985) pp. 157-181. Zbl0603.49020MR845923
  9. [9] J. HASLINGER and P. NEITTAANMÄKI, On the existence of optimal shapes in contact problems, Numer. Funct. Anal, and Optimiz., 7 (1984) pp.107-124. Zbl0559.73099MR767377
  10. [10] J. HASLINGER and P. NEITTAANMÄKI and T. TIIHONEN, Shape optimization of an elastic body in contact based on penalization of the state, Apl. Mat.,31(1986), pp. 54-77. Zbl0594.73109MR836802
  11. [11] E. J. HAUG and J. CEA (eds.), Optimization of Distributed Parameter Structures. Nato Advanced Study Institutes Series, Series E, Alphen aan den Rijn : Sijthoff and Noordhoff, 1981. Zbl0511.00034
  12. [12] I. HALVACEK, J. HASLINGER, J. NECAS and J. LOVISEK, Numerical Solution of Variational Inequalities (in Slovak), ALFA, SNTL, 1982 English Translation (to appear). 
  13. [13] V. KOMKOV (éd.), Sensitivity of Functionals with Applications to Engineering Sciences, Lecture Notes in Mathematics 1086, Springer-Verlag, Berlin, 1984. Zbl0539.00022MR791769
  14. [14] P. NEITTAANMÄKI and T. TIIHONEN, Sensitivity analysis for a class of optimal shape design problems, University of Jyväskylä, Department of Mathematics, Report 29, 1985. Zbl0592.49005MR793016
  15. [15] J. A. NITSCHE, On Korn's second inequality, R.A.I.R.O., Analyse numérique, 15 (1981) pp. 237-248. Zbl0467.35019MR631678
  16. [16] O. PIRONNEAU, Optimal Shape Design For Elliptic Systems, Springer Series in Comput. Physics, Springer-Verlag, New York, 1984. Zbl0534.49001MR725856
  17. [17] J. SOKOLOWSKI, Sensitivity analysis for a class of variational inequalities, in [11] pp. 1600-1609. Zbl0516.73108MR691007
  18. [18] J. SOKOLOWSKI and J. P. ZOLESIO, Shape sensitivity analysis for variational inequalities, Proceedings of l0th IFIP Conference, pp. 399-407, LN in Control and Information Sciences 38, Springer-Verlag, Berlin, 1982. Zbl0487.49004MR1215733
  19. [19] T. TIIHONEN, Some remarks on solving numerically contact problems in elasticity, in Proc of the Summer School in Numerical Analysis at Jyväskylä (ed. P. Neittaanmäki), pp. 309-317, University of Jyväskylä, Dept. Math., Report 31, 1985. Zbl0586.73194
  20. [20] J. P. ZOLESIO, The Material derivative (or speed) method for shape optimization, in [9] pp. 1089-1151. Zbl0517.73097MR690991
  21. [21] J. P. ZOLESIO, Shape controlability for free boundaries, in Proc. of 11th IFIP Conference on System Modelling and Control Theory (ed. P. Thoft-Christensen), LN in Control and Information Sciences 59, Springer-Verlag, Berlin, 1984. Zbl0543.49016MR769684

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.