A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem
- Volume: 28, Issue: 2, page 141-176
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBécache, E., and Ha Duong, T.. "A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.2 (1994): 141-176. <http://eudml.org/doc/193734>.
@article{Bécache1994,
author = {Bécache, E., Ha Duong, T.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {wave scattering; Laplace-Fourier transform; existence; uniqueness; regularisation; hypersingularity; Galerkin-type approximation},
language = {eng},
number = {2},
pages = {141-176},
publisher = {Dunod},
title = {A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem},
url = {http://eudml.org/doc/193734},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Bécache, E.
AU - Ha Duong, T.
TI - A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 2
SP - 141
EP - 176
LA - eng
KW - wave scattering; Laplace-Fourier transform; existence; uniqueness; regularisation; hypersingularity; Galerkin-type approximation
UR - http://eudml.org/doc/193734
ER -
References
top- [1] A. BAMBERGER and T. HA DUONG, 1986, Formulation variationnelle espace-temps pour le calcul par potentiel retardé d'une onde acoustique, Math. Methods Appl. Sci., 8, 405-435. Zbl0618.35069MR859833
- [2] A. BAMBERGER and T. HA DUONG, 1986, Formulation variationnelle espace-temps pour le calcul par potentiel retardé d'une onde acoustique; Problème de Neumann, Math. Methods Appl. Sci., 8, 598-608. Zbl0636.65119MR870995
- [3] A. BAMBERGER, 1983, Approximation de la diffraction d'ondes élastiques, une nouvelle approche (I), (II), (III), Technical report, École Polytechnique, CMAP, Rapports Internes n° 91, 96, 98. Zbl0571.73020
- [4] E. BÉCACHE, 1991, Résolution par une méthode d'équations intégrales d'un problème de diffraction d'ondes élastiques transitoires par une fissure. PhD thesis, Université de Paris 6. Thèse.
- [5] E. BÉCACHE, 1993, A Variational Boundary Integral Equation Method for an Elastodynamic Antiplane Crack, Int. J. for Numerical Meth. in Eng., 36, 969-984 Zbl0772.73088MR1208455
- [6] E. BÉCACHE, J.-C. NÉDÉLEC, N. NISHIMURA, 1993, Regularization in 3D for Anisotropic Elastodynamic Crack and Obstacle Problems, J. of Elasticity, 31, 25-46. Zbl0773.73029MR1221204
- [7] D. E. BESKOS, 1987, Boundary elements methods in dynamic analysis, Appl. Mech. Rev., 40, 1-23.
- [8] M. BONNET, 1986, Méthode des équations intégrales régularisées en élastodynamyque, PhD thesis, ENPC, Thèse. Zbl0612.73083MR884382
- [9] H. D. BUI, 1977, An intgral equations method for sol ving the problems of a plane crack of arbitrary shape, J. Mech. Phys. Solids, 25, 29-39. Zbl0355.73074MR443528
- [10] P. CORTEY-DUMONT, 1984, Simulation Numérique de Problèmes de Diffraction d'Ondes par une Fisure, PhD thesis, Université Paris VI, Thèse d'État.
- [11] R. DAUTRAY and J. L. LIONS, 1985, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, vol. 2. Masson. Zbl0642.35001
- [12] T. HA DUONG, 1990, On the transient acoustic scattering by a flat object, Japan J. Appl. Math., 7, 489-513. Zbl0719.35063MR1076300
- [13] T. HA DUONG, 1992, On the boundary integral equations for the crack opening displacement of flat cracks, Integr. Equat. Oper. Th., 15, 427-453. Zbl0753.45005MR1155713
- [14] V. A. KONDRAT'EV and O. A. OLEINIK, 1988, Boundary-value problems for the System of elasticity theory in unbounded domains. Korn's inequalities, Russian Math. Surveys, 43, 65-119. Zbl0669.73005MR971465
- [15] G. KRISHNASAMY, F. J. RIZZO and T. J. RUDOLPHI, 1991, Hypersingular boundary integral equations : Their occurrence interpretation, regularization and computation. In P. K. Banerjee and S. Kobayashi, editors, Developments in Boundary Element Methods, vol. 7 ; Advanced Dynamic Analysis, Elsevier Applied Science Publishers.
- [16] J. L. LIONS and E. MAGENES, 1968, Problèmes aux limites non homogènes et Applicaitons, vol. l, Dunod. Zbl0165.10801
- [17] Ch. LUBICH, On multistep time discretization of linear initial-boundary value problems and their boundary integral equations, submitted to Numerische Mathematik. Zbl0795.65063
- [18] P. A. MARTIN and F. J. RIZZO, 1989, On boundary integral equations for crack problems, Proc. Roy. Soc. London A, 421, 341-355. Zbl0674.73071MR985268
- [19] J. C. NÉDÉLEC, 1982, Intégral Equations with non Integrable Kernels, Intégral Equations and Operator Theory, 5, 562-572. Zbl0479.65060MR665149
- [20] J. C. NÉDÉLEC, 1983, Le Potentiel de Double Couche pour les Ondes Élastique, Internal report n° 99, C.M.A.P., École Polytechnique.
- [21] N. NISHIMURA, Q. C. GUO, S. KOBAYASHI, 1987, Boundary Integral Equation Methods in Elastodynamic Crack Problems, In Brebbia, Wendland, and Kuhn, editors, Proc. 9th Int. Conf. BEM, vol. 2 : Stress Analysis Applications, pp. 279-291. Springer-Verlag.
- [22] N. NISHIMURA and S. KOBAYASHI, 1989, A regularized boundary integral equation method for elastodynamic crack problems, Computat. Mech., 4, 319-328. Zbl0675.73065
- [23] J. A. NITSCHE, 1981, On Korn's second inequality, RAIRO, Analyse numérique, 15, 237-248. Zbl0467.35019MR631678
- [24] V. SLADEK and J. SLADEK, 1984, Transient elastodynamic three-dimensional problems in cracked bodies, Appl. Math. Model, 8, 2-10. Zbl0525.73110MR734034
- [25] I. N. SNEDDON and M. LOWENGRUB, Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons. Zbl0201.26702MR258339
- [26] E. P. STEPHAN, 1986, A Boundary Integral Equation Method for Three-Dimensional Crack Problem in Elasticity, Math. Meth. in the Appl. Sci., 8, 609-623. Zbl0608.73097MR870996
- [27] E. P. STEPHAN, 1987, Boundary Integral Equation for screen problem in R3 Integral Eq. and Oper. Theory, 10, 263. Zbl0653.35016
- [28] TREVES, 1975, Basic Linear Partial Differential Equations, Academic Press. Zbl0305.35001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.