A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem

E. Bécache; T. Ha Duong

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 2, page 141-176
  • ISSN: 0764-583X

How to cite

top

Bécache, E., and Ha Duong, T.. "A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.2 (1994): 141-176. <http://eudml.org/doc/193734>.

@article{Bécache1994,
author = {Bécache, E., Ha Duong, T.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {wave scattering; Laplace-Fourier transform; existence; uniqueness; regularisation; hypersingularity; Galerkin-type approximation},
language = {eng},
number = {2},
pages = {141-176},
publisher = {Dunod},
title = {A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem},
url = {http://eudml.org/doc/193734},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Bécache, E.
AU - Ha Duong, T.
TI - A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 2
SP - 141
EP - 176
LA - eng
KW - wave scattering; Laplace-Fourier transform; existence; uniqueness; regularisation; hypersingularity; Galerkin-type approximation
UR - http://eudml.org/doc/193734
ER -

References

top
  1. [1] A. BAMBERGER and T. HA DUONG, 1986, Formulation variationnelle espace-temps pour le calcul par potentiel retardé d'une onde acoustique, Math. Methods Appl. Sci., 8, 405-435. Zbl0618.35069MR859833
  2. [2] A. BAMBERGER and T. HA DUONG, 1986, Formulation variationnelle espace-temps pour le calcul par potentiel retardé d'une onde acoustique; Problème de Neumann, Math. Methods Appl. Sci., 8, 598-608. Zbl0636.65119MR870995
  3. [3] A. BAMBERGER, 1983, Approximation de la diffraction d'ondes élastiques, une nouvelle approche (I), (II), (III), Technical report, École Polytechnique, CMAP, Rapports Internes n° 91, 96, 98. Zbl0571.73020
  4. [4] E. BÉCACHE, 1991, Résolution par une méthode d'équations intégrales d'un problème de diffraction d'ondes élastiques transitoires par une fissure. PhD thesis, Université de Paris 6. Thèse. 
  5. [5] E. BÉCACHE, 1993, A Variational Boundary Integral Equation Method for an Elastodynamic Antiplane Crack, Int. J. for Numerical Meth. in Eng., 36, 969-984 Zbl0772.73088MR1208455
  6. [6] E. BÉCACHE, J.-C. NÉDÉLEC, N. NISHIMURA, 1993, Regularization in 3D for Anisotropic Elastodynamic Crack and Obstacle Problems, J. of Elasticity, 31, 25-46. Zbl0773.73029MR1221204
  7. [7] D. E. BESKOS, 1987, Boundary elements methods in dynamic analysis, Appl. Mech. Rev., 40, 1-23. 
  8. [8] M. BONNET, 1986, Méthode des équations intégrales régularisées en élastodynamyque, PhD thesis, ENPC, Thèse. Zbl0612.73083MR884382
  9. [9] H. D. BUI, 1977, An intgral equations method for sol ving the problems of a plane crack of arbitrary shape, J. Mech. Phys. Solids, 25, 29-39. Zbl0355.73074MR443528
  10. [10] P. CORTEY-DUMONT, 1984, Simulation Numérique de Problèmes de Diffraction d'Ondes par une Fisure, PhD thesis, Université Paris VI, Thèse d'État. 
  11. [11] R. DAUTRAY and J. L. LIONS, 1985, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, vol. 2. Masson. Zbl0642.35001
  12. [12] T. HA DUONG, 1990, On the transient acoustic scattering by a flat object, Japan J. Appl. Math., 7, 489-513. Zbl0719.35063MR1076300
  13. [13] T. HA DUONG, 1992, On the boundary integral equations for the crack opening displacement of flat cracks, Integr. Equat. Oper. Th., 15, 427-453. Zbl0753.45005MR1155713
  14. [14] V. A. KONDRAT'EV and O. A. OLEINIK, 1988, Boundary-value problems for the System of elasticity theory in unbounded domains. Korn's inequalities, Russian Math. Surveys, 43, 65-119. Zbl0669.73005MR971465
  15. [15] G. KRISHNASAMY, F. J. RIZZO and T. J. RUDOLPHI, 1991, Hypersingular boundary integral equations : Their occurrence interpretation, regularization and computation. In P. K. Banerjee and S. Kobayashi, editors, Developments in Boundary Element Methods, vol. 7 ; Advanced Dynamic Analysis, Elsevier Applied Science Publishers. 
  16. [16] J. L. LIONS and E. MAGENES, 1968, Problèmes aux limites non homogènes et Applicaitons, vol. l, Dunod. Zbl0165.10801
  17. [17] Ch. LUBICH, On multistep time discretization of linear initial-boundary value problems and their boundary integral equations, submitted to Numerische Mathematik. Zbl0795.65063
  18. [18] P. A. MARTIN and F. J. RIZZO, 1989, On boundary integral equations for crack problems, Proc. Roy. Soc. London A, 421, 341-355. Zbl0674.73071MR985268
  19. [19] J. C. NÉDÉLEC, 1982, Intégral Equations with non Integrable Kernels, Intégral Equations and Operator Theory, 5, 562-572. Zbl0479.65060MR665149
  20. [20] J. C. NÉDÉLEC, 1983, Le Potentiel de Double Couche pour les Ondes Élastique, Internal report n° 99, C.M.A.P., École Polytechnique. 
  21. [21] N. NISHIMURA, Q. C. GUO, S. KOBAYASHI, 1987, Boundary Integral Equation Methods in Elastodynamic Crack Problems, In Brebbia, Wendland, and Kuhn, editors, Proc. 9th Int. Conf. BEM, vol. 2 : Stress Analysis Applications, pp. 279-291. Springer-Verlag. 
  22. [22] N. NISHIMURA and S. KOBAYASHI, 1989, A regularized boundary integral equation method for elastodynamic crack problems, Computat. Mech., 4, 319-328. Zbl0675.73065
  23. [23] J. A. NITSCHE, 1981, On Korn's second inequality, RAIRO, Analyse numérique, 15, 237-248. Zbl0467.35019MR631678
  24. [24] V. SLADEK and J. SLADEK, 1984, Transient elastodynamic three-dimensional problems in cracked bodies, Appl. Math. Model, 8, 2-10. Zbl0525.73110MR734034
  25. [25] I. N. SNEDDON and M. LOWENGRUB, Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons. Zbl0201.26702MR258339
  26. [26] E. P. STEPHAN, 1986, A Boundary Integral Equation Method for Three-Dimensional Crack Problem in Elasticity, Math. Meth. in the Appl. Sci., 8, 609-623. Zbl0608.73097MR870996
  27. [27] E. P. STEPHAN, 1987, Boundary Integral Equation for screen problem in R3 Integral Eq. and Oper. Theory, 10, 263. Zbl0653.35016
  28. [28] TREVES, 1975, Basic Linear Partial Differential Equations, Academic Press. Zbl0305.35001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.