On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem
- Volume: 79, Issue: 6, page 159-171
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topPietra, Paola, and Verdi, Claudio. "On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 79.6 (1985): 159-171. <http://eudml.org/doc/289256>.
@article{Pietra1985,
author = {Pietra, Paola, Verdi, Claudio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {12},
number = {6},
pages = {159-171},
publisher = {Accademia Nazionale dei Lincei},
title = {On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem},
url = {http://eudml.org/doc/289256},
volume = {79},
year = {1985},
}
TY - JOUR
AU - Pietra, Paola
AU - Verdi, Claudio
TI - On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1985/12//
PB - Accademia Nazionale dei Lincei
VL - 79
IS - 6
SP - 159
EP - 171
LA - eng
UR - http://eudml.org/doc/289256
ER -
References
top- BREZZI, F. and CAFFARELLI, L.A. (1983) - Convergence of the discrete free boundaries for finite element approximations, «R.A.I.R.O. Anal. Numér.», 17, 385-395. Zbl0547.65081MR713766
- CAFFARELLI, L.A. (1981) — A remark on the Hausdorff measure of a free boundary and the convergence of coincidence sets, «Boll. U.M.I.», (5) 18-A, 109-113. Zbl0453.35085MR607212
- CIARLET, P.G. (1971) - Fonction de Green discrètes et principe du maximum discret, Thesis Univ. Paris VI.
- CIARLET, P.G. (1978) - The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. Zbl0383.65058MR520174
- CIARLET, P.G. and RAVIART, P.A. (1973) - Maximum principle and uniform convergence for the finite element method, «Comput. Meth. Appl. Engrg.», 2, 17-31. Zbl0251.65069MR375802
- CORTEY DUMONT, PH. - On finite element approximation in the -norm of parabolic obstacle variational inequalities and quasi-variational inequalities, preprint. Zbl0574.65064
- FEDERER, H. (1969) - Geometric Measure Theory, Springer, Berlin. Zbl0176.00801MR257325
- FRIEDMAN, A. (1982) - Variational Principles and Free Boundary Problems, Wiley, New York. Zbl0564.49002MR679313
- GLOWINSKI, R., LIONS, J.L. and TREMOLIERES, R. (1981) - Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam. Zbl0463.65046MR635927
- R.H. NOCHETTO - A note on the approximation of free boundaries by finite element methods, to appear in (ex «R.A.I.R.O. Anal. Numér.»). Zbl0596.65092MR852686
- PIETRA, P. and VERDI, C. - Convergence of the approximate free boundary for the multidimensional one-phase Stefan problem, to appear in «Comp. Mech.». Zbl0622.65126
- FETTER, A. - -error estimate for an approximation of a parabolic variational inequality, preprint. Zbl0617.65064MR880335DOI10.1007/BF01408576
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.