On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem

Paola Pietra; Claudio Verdi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1985)

  • Volume: 79, Issue: 6, page 159-171
  • ISSN: 0392-7881

How to cite

top

Pietra, Paola, and Verdi, Claudio. "On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 79.6 (1985): 159-171. <http://eudml.org/doc/289256>.

@article{Pietra1985,
author = {Pietra, Paola, Verdi, Claudio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {12},
number = {6},
pages = {159-171},
publisher = {Accademia Nazionale dei Lincei},
title = {On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem},
url = {http://eudml.org/doc/289256},
volume = {79},
year = {1985},
}

TY - JOUR
AU - Pietra, Paola
AU - Verdi, Claudio
TI - On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1985/12//
PB - Accademia Nazionale dei Lincei
VL - 79
IS - 6
SP - 159
EP - 171
LA - eng
UR - http://eudml.org/doc/289256
ER -

References

top
  1. BREZZI, F. and CAFFARELLI, L.A. (1983) - Convergence of the discrete free boundaries for finite element approximations, «R.A.I.R.O. Anal. Numér.», 17, 385-395. Zbl0547.65081MR713766
  2. CAFFARELLI, L.A. (1981) — A remark on the Hausdorff measure of a free boundary and the convergence of coincidence sets, «Boll. U.M.I.», (5) 18-A, 109-113. Zbl0453.35085MR607212
  3. CIARLET, P.G. (1971) - Fonction de Green discrètes et principe du maximum discret, Thesis Univ. Paris VI. 
  4. CIARLET, P.G. (1978) - The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. Zbl0383.65058MR520174
  5. CIARLET, P.G. and RAVIART, P.A. (1973) - Maximum principle and uniform convergence for the finite element method, «Comput. Meth. Appl. Engrg.», 2, 17-31. Zbl0251.65069MR375802
  6. CORTEY DUMONT, PH. - On finite element approximation in the L -norm of parabolic obstacle variational inequalities and quasi-variational inequalities, preprint. Zbl0574.65064
  7. FEDERER, H. (1969) - Geometric Measure Theory, Springer, Berlin. Zbl0176.00801MR257325
  8. FRIEDMAN, A. (1982) - Variational Principles and Free Boundary Problems, Wiley, New York. Zbl0564.49002MR679313
  9. GLOWINSKI, R., LIONS, J.L. and TREMOLIERES, R. (1981) - Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam. Zbl0463.65046MR635927
  10. R.H. NOCHETTO - A note on the approximation of free boundaries by finite element methods, to appear in M 2 A N (ex «R.A.I.R.O. Anal. Numér.»). Zbl0596.65092MR852686
  11. PIETRA, P. and VERDI, C. - Convergence of the approximate free boundary for the multidimensional one-phase Stefan problem, to appear in «Comp. Mech.». Zbl0622.65126
  12. FETTER, A. - L -error estimate for an approximation of a parabolic variational inequality, preprint. Zbl0617.65064MR880335DOI10.1007/BF01408576

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.