A note on the approximation of free boundaries by finite element methods

Ricardo H. Nochetto

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1986)

  • Volume: 20, Issue: 2, page 355-368
  • ISSN: 0764-583X

How to cite

top

Nochetto, Ricardo H.. "A note on the approximation of free boundaries by finite element methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.2 (1986): 355-368. <http://eudml.org/doc/193481>.

@article{Nochetto1986,
author = {Nochetto, Ricardo H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {rates of convergence; free boundaries; obstacle problem; singular parabolic problems; two-phase Stefan problem; porous medium equation; error estimate},
language = {eng},
number = {2},
pages = {355-368},
publisher = {Dunod},
title = {A note on the approximation of free boundaries by finite element methods},
url = {http://eudml.org/doc/193481},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Nochetto, Ricardo H.
TI - A note on the approximation of free boundaries by finite element methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 2
SP - 355
EP - 368
LA - eng
KW - rates of convergence; free boundaries; obstacle problem; singular parabolic problems; two-phase Stefan problem; porous medium equation; error estimate
UR - http://eudml.org/doc/193481
ER -

References

top
  1. [1] D ARONSON, L CAFFARELLI, S KAMIN, How an initially stationary interface begins to move in porous medium flow, SIAM J Math Anal 14, 4 (1983), pp 639-658 Zbl0542.76119MR704481
  2. [2] C BAIOCCHI, Estimations d erreur dans L pour les inéquations a obstacle, Mathematical Aspects of F E M , Lectures Notes m Math 606, Springer (1977), pp 27-34 Zbl0374.65053MR488847
  3. [3] C BAIOCCHI, G POZZI, Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality, RAIRO Numer Anal 11, 4 (1977), pp 315-340 Zbl0371.65020MR464607
  4. [4] H BREZIS, Seuil de régulante pour certains problèmes unilatéraux, C R Acad Sci Paris 273 (1971), pp 35-37 Zbl0214.10703MR287366
  5. [5] H BREZIS, D KINDERLEHRER, The smoothness of solutions to nonlinear variational inequahties Indiana Univ Math J 23, 9 (1974), pp 831-844 Zbl0278.49011MR361436
  6. [6] F BREZZI, L CAFFARELLI, Convergence of the discrete free boundaries for finite element approximations, RAIRO Numer Anal 17 (1983), pp 385-395 Zbl0547.65081MR713766
  7. [7] F BREZZI, W HAGER, P RAVIART, Error estimates for the finite element solution of variational inequahties Part I Primal Theory, Numer Math 28 (1977), pp 431-443 Zbl0369.65030MR448949
  8. [8] F BREZZI, W HAGER, P RAVIART, Error estimates for the finite element solution of variational inequalities Part II Mixed Methods, Numer Math 31 (1978), pp 1-16 Zbl0427.65077MR508584
  9. [9] F BREZZI, G SACCHI, A finite element approximation of a variational inequality related to hydraulics, Calcolo 13, III (1976), pp. 257-274 Zbl0353.76068MR520171
  10. [10] L CAFFARELLI, A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets, Boll U M I (1981), pp. 109-113 Zbl0453.35085MR607212
  11. [11] L CAFFARELLI, L EVANS, Continuity of the temperature in the two-phase Stefan problems Arch Rational Mech Anal 81, 3 (1983), pp 199-220 Zbl0516.35080MR683353
  12. [12] L CAFFARELLI, A FRIEDMAN, Regularity of the free boundary for the one dimensional flow of gas in a porous medium, Amer J Math (1979), pp 1193-1218 Zbl0439.76084MR548877
  13. [13] L CAFFARELLI, A FRIEDMAN, Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Indiana Univ Math J 29 (1980), pp 361-391 Zbl0439.76085MR570687
  14. [14] L CAFFARELLI, N RIVIÈRE, Asymptotic behavior of free boundaries at their singular points, Ann Math 106 (1977), pp 309-317 Zbl0364.35041MR463690
  15. [15] P CIARLET, The finite element method for elliptic problems, North-Holland (1978) Zbl0383.65058MR520174
  16. [16] P CIARLET, P RAVIART, Maximum principle and uniform convergence for the finite element method, Comput Methods Appl Mech Engrg 2 (1973), pp 17-31 Zbl0251.65069MR375802
  17. [17] A DAMLAMIAN, Some results in the multiphase Stefan problem, Comm Partial Differential Equations 2, 10 (1977), pp 1017-1044 Zbl0399.35054MR487015
  18. [18] E DI BENEDETTO, Continuity of weak-solutions to certain singular parabolic equations Ann Mat Pura Appl IV, 130 (1982), pp 131-176 Zbl0503.35018MR663969
  19. A boundary modulus of continuity for a class of singular parabolic equations (to appear) Zbl0606.35044
  20. [19] A FRIEDMAN, , The Stefan problem in several space variables, Trans Amer Math Soc 133 (1968), pp 51-87 Zbl0162.41903MR227625
  21. [20] A FRIEDMAN, Variational Principles and Free-Boundary Problems, John Wiley & Sons (1982) Zbl0564.49002MR679313
  22. [21] L JEROME, M ROSE, Error estimetes for the multidimensional two-phase Stefan problem, Math Comp 39, 160 (1982), pp 377-414 Zbl0505.65060MR669635
  23. [22] B KNERR, The porous medium equation in one dimension, Trans Amer Math Soc 234 (1977), pp 381-415 Zbl0365.35030MR492856
  24. [23] M NIEZGODKA, I PAWLOW, A generalized Stefan problem in several space variables Appl Math Optim 9 (1983), pp 193-224 Zbl0519.35079MR687720
  25. [24] J NITSCHE, L -convergence of finite element approximations, Mathematical Aspects of F E M, Lectures Notes m Math 606, Springer (1977), pp 261-274 Zbl0362.65088MR488848
  26. [25] R NOCHETTO, Error estimates for two-phase Stefan problems in several space variables, I linear boundary conditions, II non-linear flux conditions (to appear in Calcolo) Zbl0606.65084MR859087
  27. [26] R NOCHETTO, Error estimates for multidimensional Stefan problems with general boundary conditions Free boundary problems applications and theory, Vol III (A Bossavitera/ eds ), Res Notes Math 120, Pitman (1985), pp 50-60 Zbl0593.35094MR863161
  28. [27] R NOCHETTO, A class of non-degenerate two-phase Stefan problems in several space variables, Pubblicazione N° 442 del I A N di Pavia (1984) (to appear in Comm Partial Differential Equations) Zbl0624.35085MR869101
  29. [28] P PIETRA, C VERDI, Convergence of the approximate free-boundary for the multidimensional one-phase Stefan problem, Pubblicazione N° 440 del I A N di Pavia (1984) (to appear in Comp Mech Int J ) Zbl0622.65126
  30. [29] R RANNACHER, R SCOTT, Some optimal error estimates for piecewise linear finite element approximations Math Comp 38, 158 (1982), pp 437-445 Zbl0483.65007MR645661
  31. [30] M ROSE, Numerical methods for flows through porous media I, Math Comp 40, 162 (1983), pp 435-467 Zbl0518.76078MR689465
  32. [31] A VISINTIN, Sur le problème de Stefan avec flux non lineaire, Boll U M I , Anal Funz e Appl, V, 18 C, 1 (1981), pp 63-86 Zbl0471.35078MR631569

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.