Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems
- Volume: 20, Issue: 1, page 113-128
- ISSN: 0764-583X
Access Full Article
topHow to cite
topSantos, Juan Enrique. "Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.1 (1986): 113-128. <http://eudml.org/doc/193465>.
@article{Santos1986,
author = {Santos, Juan Enrique},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Biot's dynamic equations; elastic wave propagation; compressible viscous fluid; Galerkin method},
language = {eng},
number = {1},
pages = {113-128},
publisher = {Dunod},
title = {Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems},
url = {http://eudml.org/doc/193465},
volume = {20},
year = {1986},
}
TY - JOUR
AU - Santos, Juan Enrique
TI - Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 1
SP - 113
EP - 128
LA - eng
KW - Biot's dynamic equations; elastic wave propagation; compressible viscous fluid; Galerkin method
UR - http://eudml.org/doc/193465
ER -
References
top- [1] M.A. BIOT, General Theory of Three-Dimensional Consolidation, Journal of Applied Physics, Vol. 12 (1941), pp. 155-165. Zbl67.0837.01JFM67.0837.01
- [2] M. A. BIOT, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, Journal of the Acoustical Society of America, Vol. 28, Number 2 (1965), pp. 168-178. MR134056
- [3] M. A. BIOT and D. G. WILLIS, The Elastic Coefficient of the Theory of Consolidation, Journal of Applied Mechanics, Vol. 24, Trans. Asme, Vol. 79 (1957), pp. 594-601. MR92472
- [4] G. DUVAUT and J. L. LIONS, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976. Zbl0331.35002MR521262
- [5] I. FATT, The Biot-Willis Elastic Coefficients for a Sandstone, Journal of Applied Mechanics, Vol. 26 (1959), pp. 296-297.
- [6] G. FICHERA, Existence Theorems in Elasticity-Boundary Value Problems of Elasticity with Unilateral Constrains, Encyclopedia of Physics, S. Flüge, Ed., Vol. VI a/2 : Mechanics of Solids II, C. Truesdell, Ed., Springer-Verlag, Berlin, 1972, pp. 347-424.
- [7] V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin, 1981. Zbl0441.65081MR548867
- [8] J. L. LIONS, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
- [9] J. A. NITSCHE, On Korn's Second Inequality, preprint, Institute für Angenwandte Mathematik, Albert Ludwig Universitat, Herman-Herder Str. 10, 7800, Freiburg i, Br., West Germany. Zbl0467.35019
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.