Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems

Juan Enrique Santos

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1986)

  • Volume: 20, Issue: 1, page 113-128
  • ISSN: 0764-583X

How to cite

top

Santos, Juan Enrique. "Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.1 (1986): 113-128. <http://eudml.org/doc/193465>.

@article{Santos1986,
author = {Santos, Juan Enrique},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Biot's dynamic equations; elastic wave propagation; compressible viscous fluid; Galerkin method},
language = {eng},
number = {1},
pages = {113-128},
publisher = {Dunod},
title = {Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems},
url = {http://eudml.org/doc/193465},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Santos, Juan Enrique
TI - Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 1
SP - 113
EP - 128
LA - eng
KW - Biot's dynamic equations; elastic wave propagation; compressible viscous fluid; Galerkin method
UR - http://eudml.org/doc/193465
ER -

References

top
  1. [1] M.A. BIOT, General Theory of Three-Dimensional Consolidation, Journal of Applied Physics, Vol. 12 (1941), pp. 155-165. Zbl67.0837.01JFM67.0837.01
  2. [2] M. A. BIOT, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, Journal of the Acoustical Society of America, Vol. 28, Number 2 (1965), pp. 168-178. MR134056
  3. [3] M. A. BIOT and D. G. WILLIS, The Elastic Coefficient of the Theory of Consolidation, Journal of Applied Mechanics, Vol. 24, Trans. Asme, Vol. 79 (1957), pp. 594-601. MR92472
  4. [4] G. DUVAUT and J. L. LIONS, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976. Zbl0331.35002MR521262
  5. [5] I. FATT, The Biot-Willis Elastic Coefficients for a Sandstone, Journal of Applied Mechanics, Vol. 26 (1959), pp. 296-297. 
  6. [6] G. FICHERA, Existence Theorems in Elasticity-Boundary Value Problems of Elasticity with Unilateral Constrains, Encyclopedia of Physics, S. Flüge, Ed., Vol. VI a/2 : Mechanics of Solids II, C. Truesdell, Ed., Springer-Verlag, Berlin, 1972, pp. 347-424. 
  7. [7] V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin, 1981. Zbl0441.65081MR548867
  8. [8] J. L. LIONS, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  9. [9] J. A. NITSCHE, On Korn's Second Inequality, preprint, Institute für Angenwandte Mathematik, Albert Ludwig Universitat, Herman-Herder Str. 10, 7800, Freiburg i, Br., West Germany. Zbl0467.35019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.