Numerical methods for a model for wave propagation in composite anisotropic media
Oscar Mario Lovera; Juan Enrique Santos
- Volume: 22, Issue: 1, page 159-176
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLovera, Oscar Mario, and Santos, Juan Enrique. "Numerical methods for a model for wave propagation in composite anisotropic media." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.1 (1988): 159-176. <http://eudml.org/doc/193522>.
@article{Lovera1988,
author = {Lovera, Oscar Mario, Santos, Juan Enrique},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {wave propagation; anisotropic system; fluid-saturated porous medium; Biot's low-frequency dynamic equations; Energy flux},
language = {eng},
number = {1},
pages = {159-176},
publisher = {Dunod},
title = {Numerical methods for a model for wave propagation in composite anisotropic media},
url = {http://eudml.org/doc/193522},
volume = {22},
year = {1988},
}
TY - JOUR
AU - Lovera, Oscar Mario
AU - Santos, Juan Enrique
TI - Numerical methods for a model for wave propagation in composite anisotropic media
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 1
SP - 159
EP - 176
LA - eng
KW - wave propagation; anisotropic system; fluid-saturated porous medium; Biot's low-frequency dynamic equations; Energy flux
UR - http://eudml.org/doc/193522
ER -
References
top- [1] F. BREZZI, J. DOUGLAS Jr., and L.D. MARINI, Two families of Mixed Finite Elements for Second Order Elliptic Problems, Numerische Mathematik, vol. 47 (1985), pp. 217.235. Zbl0599.65072MR799685
- [2] F. BREZZI, J. DOUGLAS Jr., R. DURAND and M. FORTIN, Mixed Finite Elements for Second Order Elliptic Problems in Three Variables, Numerische Mathematik. 51 (1987), pp. 237-250. Zbl0631.65107MR890035
- [3] M.A. BIOT, Theory of Propargation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, Journal of the Acoustical Society of America, vol. 28, Number 2 (1956), pp. 168-179. MR134056
- [4] M. A. BIOT and D. G. WILLIS, The Elastic Coefficients of the Theory of Consolidation, Journal of Applied Mechanics, Vol. 24, Trans. Asme., vol. 79, (1957), pp. 594-601. MR92472
- [5] M. A. BIOT, Mechanics of Deformation and Acoustic Propagation in Porous Media, Journal of Applied Physics, vol. 33, Number 4 (1962), pp. 1482-1498. Zbl0104.21401MR152238
- [6] J. DOUGLAS Jr., and J. E. ROBERTS, Global Estimates for Mixed Methods for Second Order Elliptic Equations, Mathematics of Computation, vol. 44 (1985), pp. 39-52. Zbl0624.65109MR771029
- [7] G. DUVAUT and J. L. LIONS, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976. Zbl0331.35002MR521262
- [8] G. FICHERA, Existence Theorems in Elasticity-Boundary Value Problems of Elasticity with Unilateral Constrains, Encyclopedia of Physics, S. Flüge, Ed., vol. 22, n° 1, 1988 vol.VIa/2: Mechanics of Solids II, C. Truesdell Ed., Springer-Verlag, Berlin, 1972, pp. 347-424.
- [9] V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier- Stokes Equations, Springer-Verlag, Berlin, 1981. Zbl0441.65081MR548867
- [10] A. E. H. LOVE, A Treatise on the Mathematical Theory of Elasticity, Dover, New York, Fourth Edition. Zbl0063.03651JFM53.0752.01
- [11] O. M. LOVERA, Boundary Conditions for a Fluid-Saturated Porous Solid, Geophysics, 52 (1987), pp. 174-178.
- [12] J. LYSMER and R. L. KUHLEMEYER, Finite Dynamic Model for Infinite Media, Journal Eng. Mech. Division, Proc. Amer. Soc. Civil Eng., 95 (1969), pp. 859-877.
- [13] J. C. NEDELEC, Mixed Finite Elements in , Numerische Mathematik, 35 (1980), pp. 325-341. Zbl0419.65069MR592160
- [14] J.A. NITSCHE, On Korn's Second Inequality, R.A.I.R.O. Anal. Numer., 15 (1981), pp. 237-248. Zbl0467.35019MR631678
- [15] P.A. RAVIART and J. M. THOMAS, A Mixed Finite Element Method for 2en Order Elliptic Problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606, Springer-Verlag, Berlin, 1977. Zbl0362.65089MR483555
- [16] J. E. SANTOS, Finite Element Methods for the Simulation of Ware Propagation in Two-dimensional Inhomogeneous Elastic Media, Calcolo, 22 (1985), pp. 249-317. Zbl0592.73039MR859084
- [17] J. E. SANTOS, Elastic Wave Propagatin in Fluid-Saturated Porous Media. Part I. The Existence and Uniqueness Theorems, Modélisation Mathématique et Analyse Numérique, vol. 20 (1986), pp. 113-128. Zbl0616.76104MR844519
- [18] J. E. SANTOS and E. J. ORENA, Elastic Wave Propagation in Fluid-Saturated Porous Media. Part II. The Galerkin Procedures, Modélisation Mathématique et Analyse Numérique, vol. 20 1986(), pp. 129-139. Zbl0616.76105MR844520
- [19] J. E. SANTOS, J. DOUGLAS Jr., and A. P. CALDERON, Finite Element Methods for a Composite Model in Elastodynamics, to appear in SIAM J. Numer. Anal. Zbl0684.73034MR942205
- [20] J. M. THOMAS, Sur l'Analyse Numérique des Méthodes d'Éléments Finis Hybrides et Mixtes, Thèse, Université P. et M. Curie, Paris, 1977.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.