Numerical methods for a model for wave propagation in composite anisotropic media

Oscar Mario Lovera; Juan Enrique Santos

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 1, page 159-176
  • ISSN: 0764-583X

How to cite

top

Lovera, Oscar Mario, and Santos, Juan Enrique. "Numerical methods for a model for wave propagation in composite anisotropic media." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.1 (1988): 159-176. <http://eudml.org/doc/193522>.

@article{Lovera1988,
author = {Lovera, Oscar Mario, Santos, Juan Enrique},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {wave propagation; anisotropic system; fluid-saturated porous medium; Biot's low-frequency dynamic equations; Energy flux},
language = {eng},
number = {1},
pages = {159-176},
publisher = {Dunod},
title = {Numerical methods for a model for wave propagation in composite anisotropic media},
url = {http://eudml.org/doc/193522},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Lovera, Oscar Mario
AU - Santos, Juan Enrique
TI - Numerical methods for a model for wave propagation in composite anisotropic media
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 1
SP - 159
EP - 176
LA - eng
KW - wave propagation; anisotropic system; fluid-saturated porous medium; Biot's low-frequency dynamic equations; Energy flux
UR - http://eudml.org/doc/193522
ER -

References

top
  1. [1] F. BREZZI, J. DOUGLAS Jr., and L.D. MARINI, Two families of Mixed Finite Elements for Second Order Elliptic Problems, Numerische Mathematik, vol. 47 (1985), pp. 217.235. Zbl0599.65072MR799685
  2. [2] F. BREZZI, J. DOUGLAS Jr., R. DURAND and M. FORTIN, Mixed Finite Elements for Second Order Elliptic Problems in Three Variables, Numerische Mathematik. 51 (1987), pp. 237-250. Zbl0631.65107MR890035
  3. [3] M.A. BIOT, Theory of Propargation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, Journal of the Acoustical Society of America, vol. 28, Number 2 (1956), pp. 168-179. MR134056
  4. [4] M. A. BIOT and D. G. WILLIS, The Elastic Coefficients of the Theory of Consolidation, Journal of Applied Mechanics, Vol. 24, Trans. Asme., vol. 79, (1957), pp. 594-601. MR92472
  5. [5] M. A. BIOT, Mechanics of Deformation and Acoustic Propagation in Porous Media, Journal of Applied Physics, vol. 33, Number 4 (1962), pp. 1482-1498. Zbl0104.21401MR152238
  6. [6] J. DOUGLAS Jr., and J. E. ROBERTS, Global Estimates for Mixed Methods for Second Order Elliptic Equations, Mathematics of Computation, vol. 44 (1985), pp. 39-52. Zbl0624.65109MR771029
  7. [7] G. DUVAUT and J. L. LIONS, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976. Zbl0331.35002MR521262
  8. [8] G. FICHERA, Existence Theorems in Elasticity-Boundary Value Problems of Elasticity with Unilateral Constrains, Encyclopedia of Physics, S. Flüge, Ed., vol. 22, n° 1, 1988 vol.VIa/2: Mechanics of Solids II, C. Truesdell Ed., Springer-Verlag, Berlin, 1972, pp. 347-424. 
  9. [9] V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier- Stokes Equations, Springer-Verlag, Berlin, 1981. Zbl0441.65081MR548867
  10. [10] A. E. H. LOVE, A Treatise on the Mathematical Theory of Elasticity, Dover, New York, Fourth Edition. Zbl0063.03651JFM53.0752.01
  11. [11] O. M. LOVERA, Boundary Conditions for a Fluid-Saturated Porous Solid, Geophysics, 52 (1987), pp. 174-178. 
  12. [12] J. LYSMER and R. L. KUHLEMEYER, Finite Dynamic Model for Infinite Media, Journal Eng. Mech. Division, Proc. Amer. Soc. Civil Eng., 95 (1969), pp. 859-877. 
  13. [13] J. C. NEDELEC, Mixed Finite Elements in R 3 , Numerische Mathematik, 35 (1980), pp. 325-341. Zbl0419.65069MR592160
  14. [14] J.A. NITSCHE, On Korn's Second Inequality, R.A.I.R.O. Anal. Numer., 15 (1981), pp. 237-248. Zbl0467.35019MR631678
  15. [15] P.A. RAVIART and J. M. THOMAS, A Mixed Finite Element Method for 2en Order Elliptic Problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606, Springer-Verlag, Berlin, 1977. Zbl0362.65089MR483555
  16. [16] J. E. SANTOS, Finite Element Methods for the Simulation of Ware Propagation in Two-dimensional Inhomogeneous Elastic Media, Calcolo, 22 (1985), pp. 249-317. Zbl0592.73039MR859084
  17. [17] J. E. SANTOS, Elastic Wave Propagatin in Fluid-Saturated Porous Media. Part I. The Existence and Uniqueness Theorems, Modélisation Mathématique et Analyse Numérique, vol. 20 (1986), pp. 113-128. Zbl0616.76104MR844519
  18. [18] J. E. SANTOS and E. J. ORENA, Elastic Wave Propagation in Fluid-Saturated Porous Media. Part II. The Galerkin Procedures, Modélisation Mathématique et Analyse Numérique, vol. 20 1986(), pp. 129-139. Zbl0616.76105MR844520
  19. [19] J. E. SANTOS, J. DOUGLAS Jr., and A. P. CALDERON, Finite Element Methods for a Composite Model in Elastodynamics, to appear in SIAM J. Numer. Anal. Zbl0684.73034MR942205
  20. [20] J. M. THOMAS, Sur l'Analyse Numérique des Méthodes d'Éléments Finis Hybrides et Mixtes, Thèse, Université P. et M. Curie, Paris, 1977. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.