How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes

Alexander Ženíšek

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 1, page 171-191
  • ISSN: 0764-583X

How to cite

top

Ženíšek, Alexander. "How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.1 (1987): 171-191. <http://eudml.org/doc/193495>.

@article{Ženíšek1987,
author = {Ženíšek, Alexander},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Ciarlet-Raviart theory; variational problem; Green's theorem; discrete approximation; variational crimes; convergence; errors},
language = {eng},
number = {1},
pages = {171-191},
publisher = {Dunod},
title = {How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes},
url = {http://eudml.org/doc/193495},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Ženíšek, Alexander
TI - How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 1
SP - 171
EP - 191
LA - eng
KW - Ciarlet-Raviart theory; variational problem; Green's theorem; discrete approximation; variational crimes; convergence; errors
UR - http://eudml.org/doc/193495
ER -

References

top
  1. [1] P. G. CIARLET, P. A. RAVIART, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 409-474. Zbl0262.65070MR421108
  2. [2] P. G. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  3. [3] P. DOKTOR, On the density of smooth functions in certain subspaces of Sobolev space. Commentationes Mathematicae Universitatis Carolinae 14 (1973), 609-622. Zbl0268.46036MR336317
  4. [4] G. STRANG, Variational crimes in the finite element method. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 689-710. Zbl0264.65068MR413554
  5. [5] G. STRANG, G. FIX, An Analysis of the Finite Element Method. Prentice-Hall Inc., Englewood Cliffs, N. J., 1973. Zbl0356.65096MR443377
  6. [6] M. ZLAMAL, The finite element method in domains with curved boundaries. Int. J. Numer. Meth. Engng. 5 (1973), 367-373. Zbl0254.65073MR395262
  7. [7] M. ZLAMAL, Curved elements in the finite element method. I. SIAM J. Numer. nal. 10 (1973), 229-240. Zbl0285.65067MR395263
  8. [8] A. ZENISEK, Curved triangular finite Cm-elements. Api. Mat. 23 (1978), 346-377. Zbl0404.35041MR502072
  9. [9] A. ZENISEK, Discrete forms of Friedrichs' inequalities in the finite element method. R.A.I.R.O. Anal. num. 15 (1981), 265-286. Zbl0475.65072MR631681
  10. [10] A. ZENISEK, Nonhomogeneous boundary conditions and curved triangular finite elements. Apl. Mat. (1981), 121-141. Zbl0475.65073MR612669

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.