Discrete forms of Friedrichs' inequalities in the finite element method
- Volume: 15, Issue: 3, page 265-286
- ISSN: 0764-583X
Access Full Article
topHow to cite
topŽeníšek, Alexander. "Discrete forms of Friedrichs' inequalities in the finite element method." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 15.3 (1981): 265-286. <http://eudml.org/doc/193383>.
@article{Ženíšek1981,
author = {Ženíšek, Alexander},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {discrete forms of Friedrichs' inequalities; finite element method; curved finite elements; bending of thin elastic plates},
language = {eng},
number = {3},
pages = {265-286},
publisher = {Dunod},
title = {Discrete forms of Friedrichs' inequalities in the finite element method},
url = {http://eudml.org/doc/193383},
volume = {15},
year = {1981},
}
TY - JOUR
AU - Ženíšek, Alexander
TI - Discrete forms of Friedrichs' inequalities in the finite element method
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1981
PB - Dunod
VL - 15
IS - 3
SP - 265
EP - 286
LA - eng
KW - discrete forms of Friedrichs' inequalities; finite element method; curved finite elements; bending of thin elastic plates
UR - http://eudml.org/doc/193383
ER -
References
top- [1] J. H. BRAMBLE, M. ZLÄMAL, Triangular elements in the finite element method, Math. Comp. 24(1970), 809-820. Zbl0226.65073MR282540
- [2] P. G. CIARLET, P. A. RAVIART, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Diffe-rential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 409-474. Zbl0262.65070MR421108
- [3] P. G. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
- [4] J. HREBICEK, A numerical analysis of a general biharmonic problem by the finite element method. (To appear.) Zbl0541.65072
- [5] L MANSFIELD, Approximation of the boundary in the finite element solution of fourth order problems SIAM J Numer Anal 15 (1978), 568-579 Zbl0391.65047MR471373
- [6] J NECAS, Les méthodes directes en théorie des équations elliptiques Academia, Prague, 1967 MR227584
- [7] M ZLAMAL, Curved elements in the finite element method I SIAM J Numer Anal 10 (1973), 229-240 Zbl0285.65067MR395263
- [8] M ZLAMAL, Curved elements in the finite element method II SIAM J Numer Anal 11 (1974), 347-362 Zbl0277.65064MR343660
- [9] A ZENISEK, Curved triangular finite -elements Apl Mat 23 (1978), 346-377 Zbl0404.35041MR502072
- [10] A ZENISEK, Nonhomogeneous boundary conditions and curved triangular finite elements Apl Mat 26(1981), 121-141 Zbl0475.65073MR612669
Citations in EuDML Documents
top- Libor Čermák, A note on a discrete form of Friedrichs' inequality
- Alexander Ženíšek, How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes
- Jiří Hřebíček, Numerical analysis of the general biharmonic problem by the finite element method
- Libor Čermák, The finite element solution of second order elliptic problems with the Newton boundary condition
- Dana Říhová-Škabrahová, A note to Friedrichs' inequality
- Miloslav Feistauer, Veronika Sobotíková, Finite element approximation of nonlinear elliptic problems with discontinuous coefficients
- Helena Růžičková, Alexander Ženíšek, Finite elements methods for solving viscoelastic thin plates
- Michal Křížek, Professor Alexander Ženíšek passed away
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.