Discrete forms of Friedrichs' inequalities in the finite element method

Alexander Ženíšek

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1981)

  • Volume: 15, Issue: 3, page 265-286
  • ISSN: 0764-583X

How to cite

top

Ženíšek, Alexander. "Discrete forms of Friedrichs' inequalities in the finite element method." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 15.3 (1981): 265-286. <http://eudml.org/doc/193383>.

@article{Ženíšek1981,
author = {Ženíšek, Alexander},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {discrete forms of Friedrichs' inequalities; finite element method; curved finite elements; bending of thin elastic plates},
language = {eng},
number = {3},
pages = {265-286},
publisher = {Dunod},
title = {Discrete forms of Friedrichs' inequalities in the finite element method},
url = {http://eudml.org/doc/193383},
volume = {15},
year = {1981},
}

TY - JOUR
AU - Ženíšek, Alexander
TI - Discrete forms of Friedrichs' inequalities in the finite element method
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1981
PB - Dunod
VL - 15
IS - 3
SP - 265
EP - 286
LA - eng
KW - discrete forms of Friedrichs' inequalities; finite element method; curved finite elements; bending of thin elastic plates
UR - http://eudml.org/doc/193383
ER -

References

top
  1. [1] J. H. BRAMBLE, M. ZLÄMAL, Triangular elements in the finite element method, Math. Comp. 24(1970), 809-820. Zbl0226.65073MR282540
  2. [2] P. G. CIARLET, P. A. RAVIART, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Diffe-rential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 409-474. Zbl0262.65070MR421108
  3. [3] P. G. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  4. [4] J. HREBICEK, A numerical analysis of a general biharmonic problem by the finite element method. (To appear.) Zbl0541.65072
  5. [5] L MANSFIELD, Approximation of the boundary in the finite element solution of fourth order problems SIAM J Numer Anal 15 (1978), 568-579 Zbl0391.65047MR471373
  6. [6] J NECAS, Les méthodes directes en théorie des équations elliptiques Academia, Prague, 1967 MR227584
  7. [7] M ZLAMAL, Curved elements in the finite element method I SIAM J Numer Anal 10 (1973), 229-240 Zbl0285.65067MR395263
  8. [8] M ZLAMAL, Curved elements in the finite element method II SIAM J Numer Anal 11 (1974), 347-362 Zbl0277.65064MR343660
  9. [9] A ZENISEK, Curved triangular finite C m -elements Apl Mat 23 (1978), 346-377 Zbl0404.35041MR502072
  10. [10] A ZENISEK, Nonhomogeneous boundary conditions and curved triangular finite elements Apl Mat 26(1981), 121-141 Zbl0475.65073MR612669

Citations in EuDML Documents

top
  1. Libor Čermák, A note on a discrete form of Friedrichs' inequality
  2. Alexander Ženíšek, How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes
  3. Jiří Hřebíček, Numerical analysis of the general biharmonic problem by the finite element method
  4. Libor Čermák, The finite element solution of second order elliptic problems with the Newton boundary condition
  5. Dana Říhová-Škabrahová, A note to Friedrichs' inequality
  6. Miloslav Feistauer, Veronika Sobotíková, Finite element approximation of nonlinear elliptic problems with discontinuous coefficients
  7. Helena Růžičková, Alexander Ženíšek, Finite elements methods for solving viscoelastic thin plates

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.