Nonhomogeneous boundary conditions and curved triangular finite elements
Aplikace matematiky (1981)
- Volume: 26, Issue: 2, page 121-141
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topReferences
top- J. J. Blair, Higher order approximations to the boundary conditions for the finite element method, Math. Соmр. 30 (1976), 250-262. (1976) Zbl0342.65068MR0398123
- J. H. Bramble S. R. Hilbert, 10.1137/0707006, SIAM J. Numer. Anal. 7 (1970), 112-124. (1970) MR0263214DOI10.1137/0707006
- P. G. Ciarlet P. A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), pp. 409-474, Academic Press, New York 1972. (1972) MR0421108
- P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam 1978. (1978) Zbl0383.65058MR0520174
- S. Koukal, Piecewise polynomial interpolations in the finite element method, Apl. Mat. 18 (1973), 146-160. (1973) MR0321318
- L. Mansfield, 10.1137/0715037, SIAM J. Numer. Anal. 15 (1978), 568-579. (1978) Zbl0391.65047MR0471373DOI10.1137/0715037
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) MR0227584
- R. Scott, 10.1137/0712032, SIAM J. Numer. Anal. 12 (1975), 404-427. (1975) Zbl0357.65082MR0386304DOI10.1137/0712032
- G. Strang, 10.1007/BF01395933, Numer. Math. 19 (1972), 81-98. (1972) Zbl0221.65174MR0305547DOI10.1007/BF01395933
- M. Zlámal, 10.1137/0710022, SIAM J. Numer. Anal. 10 (1973), 229-240. (1973) MR0395263DOI10.1137/0710022
- M. Zlámal, 10.1137/0711031, SIAM J. Numer. Anal. 11 (1974), 347-362. (1974) MR0343660DOI10.1137/0711031
- A. Ženíšek, Curved triangular finite -elements, Apl. Mat. 23 (1978), 346-377. (1978) MR0502072
- A. Ženíšek, Discrete forms of Friedrichs' inequalities in the finite element method, (To appear.) Zbl0475.65072MR0631681
Citations in EuDML Documents
top- Alexander Ženíšek, Discrete forms of Friedrichs' inequalities in the finite element method
- Libor Čermák, A note on a discrete form of Friedrichs' inequality
- Alexander Ženíšek, How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes
- Jiří Hřebíček, Numerical analysis of the general biharmonic problem by the finite element method
- Libor Čermák, The finite element solution of second order elliptic problems with the Newton boundary condition
- Miloslav Feistauer, Veronika Sobotíková, Finite element approximation of nonlinear elliptic problems with discontinuous coefficients
- Miloslav Feistauer, Karel Najzar, Karel Švadlenka, On a parabolic problem with nonlinear Newton boundary conditions