Numerical methods with interface estimates for the porous medium equation

David Hoff; Bradley J. Lucier

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 3, page 465-485
  • ISSN: 0764-583X

How to cite

top

Hoff, David, and Lucier, Bradley J.. "Numerical methods with interface estimates for the porous medium equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.3 (1987): 465-485. <http://eudml.org/doc/193510>.

@article{Hoff1987,
author = {Hoff, David, Lucier, Bradley J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {numerical approximation; porous-medium equation; error bound; Hölder exponent; weak truncation error; finite-difference scheme},
language = {eng},
number = {3},
pages = {465-485},
publisher = {Dunod},
title = {Numerical methods with interface estimates for the porous medium equation},
url = {http://eudml.org/doc/193510},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Hoff, David
AU - Lucier, Bradley J.
TI - Numerical methods with interface estimates for the porous medium equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 3
SP - 465
EP - 485
LA - eng
KW - numerical approximation; porous-medium equation; error bound; Hölder exponent; weak truncation error; finite-difference scheme
UR - http://eudml.org/doc/193510
ER -

References

top
  1. [1] C BAIOCCHI, Estimations d’erreur dans L pour les inéquations à obstacle, in « Mathematical Aspects of Finite Element Methods », Lecture Notes in Mathematics, 606, Springer Verlag, NewYork, in 1977, pp. 27-34. Zbl0374.65053MR488847
  2. [2] L. A. CAFFARELLI and A. FRIEDMAN, Regularity of the free boundary of a gas flow in ann-dimensional porous medium, Indiana Math. J. 29 (1980), 361-391 Zbl0439.76085MR570687
  3. [3] M. G. CRANDALL and L. TARTAR, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc.34 (1980), 385-390. Zbl0449.47059MR553381
  4. [4] E. Di BENEDETTO and D. HOFF, An interface tracking algorithm for the porous medium equation, Trans, Amer. Math. Soc.284 (1984), 463-500. Zbl0564.76090MR743729
  5. [5] M. GURTIN, R. MACCAMY and E. SOCOLOVSKY, A coordinate transformation for the porous media equation that renders the free boundary stationary, MRCTech. Rep.2560. Zbl0574.76093
  6. [6] K. HOLLIG and M. PILANT, Regularity of the free boundary for the porous medium equation, MRC Tech. Rep.2742. Zbl0621.35101
  7. [7] J. JEROME, Approximation of Nonlinear Evolution Systems, Academic Press,New York, 1983. Zbl0512.35001MR690582
  8. [8] B. J. LUCIER, On nonlocal monotone difference methods for scalar conservation laws, Math. Comp. 47 (1986), 19-36. Zbl0604.65061MR842121
  9. [9] R. H. NOCHETTO, A note on the approximation of free boundaries by finite element methods, Modélisation Math, et Anal. Num. 20 (1986), 355-368. Zbl0596.65092MR852686
  10. [10] M. E. ROSE, Numerical methods for flows through porous media. I, Math.Comp. 40 (1983), 435-467. Zbl0518.76078MR689465
  11. [11] K. TOMOEDA and M. MIMURA , Numerical approximations to interface curves for a porous media equation, Hiroshima Math. J. 13 (1983), 273-294. Zbl0537.76065MR707183

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.