Stability of the Lagrange-Galerkin method with non-exact integration
K. W. Morton; A. Priestley; E. Suli
- Volume: 22, Issue: 4, page 625-653
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] M. ABRAMOWITZ & A. STEGUN, Handbook of Mathematical Functions. Dover Publications Inc., New York, 1965. Zbl0171.38503
- [2] J. P. BENQUE, G. LABADIE & J. RONAT, A new finite element method for the Navier-Stokes equations coupled with a temperature equation. Proc. 4th Int. Symp. on Finite Element Methods in Flow Probiems (Ed. T. Kawai), North-Holland, Amsterdam, Oxford, New York, 1982, pp. 295-301. Zbl0508.76049MR706421
- [3] M. BERCOVIER& O. PIRONNEAU, Characteristics and the finite element method. Proc. 4th Int. Symp. on Finite Element Methods in Flow Problems (Ed. T. Kawai), North-Holland, Amsterdam, Oxford, New York, 1982, pp. 67-63. Zbl0508.76007MR706421
- [4] P. N. CHILDS & K. W. MORTON, Characteristic Galerkin methods for scalar conservation laws in on dimension. Oxford University Computing Laboratory Report No. 86/5, 1986. To appear in SIAM J. Numerical Analysis. Zbl0728.65086
- [5] A. J. CHORIN & K. W. MORTON, A Mathematical Introduction to Fluid Mechanics (Universitext). Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984. Zbl0417.76002
- [6] J. DOUGLAS Jr & T. F. RUSSELL, Numerical methods for convention-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal., 19 (1982), pp. 871-885. Zbl0492.65051MR672564
- [7] J. W. EASTWOOD, Privarte communication.
- [8] F. H. HARLOW, The particle in celle computing method for fluid dynamics. Methods in Computational Physis (Ed. B. Adler, S. Fernbach & M. Rotenberg), Vol. 3, Academic Press, New York, 1964.
- [9] R. W. HOCKNEY & J. W. EASTWOOD, Computer Simulation Using Particles. McGraw-Hill, New York, 1981. Zbl0662.76002
- [10] Z. KOPAL, Numerical Analysis. Chapman & Hall Ltd. London, 1961. Zbl0101.33701
- [11] I. V. KRYLOV, Approximate Calculation of Integrals. Mac Millan, New York, 1962. Zbl0111.31801MR144464
- [12] P. LESAINT, Numerical solution of the equation of continuity. Topics in Numerical Analysis III (Ed. J. J. H. Miller), Academic Press, London, New York, San Francisco, 1977, pp. 199-222. Zbl0435.76010MR658144
- [13] K. W. MORTON & A. PRIESTLEY, On characteristic and Lagrange-Galerkin methods. Pitman Research Notes in Mathematics Series (Ed. D. F. Griffiths & G. A. Watson), Longman Scientific and Technical, Harlow, 1986.
- [14] K. W. MORTON & P. SWEBY, A comparison of flux limited difference methods and characteristic Galerkin methods for shock modelling. To appear in J. Comput. Phys. Zbl0632.76077
- [15] O. PIRONNEAU, On the transport diffusion algorithm and its application to the Navier-Stokes equations, Numer. Math., 38 (1982), pp. 309-332. Zbl0505.76100MR654100
- [16] T. F. RUSSELL, Time stepping along characteristics with incomplete iteration for a Galerin approcimation of miscible displacement in porus media. Ph. D. Thesis, University of Chicago, 1980. Zbl0594.76087
- [17] E. SÜLI, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations, Numer. Math., 53 (1988), pp. 459-483. Zbl0637.76024MR951325
Citations in EuDML Documents
top- Konstantinos Chrysafinos, Noel J. Walkington, Lagrangian and moving mesh methods for the convection diffusion equation
- Jozef Kacur, Roger Van Keer, Solution of contaminant transport with adsorption in porous media by the method of characteristics
- Jozef Kacur, Roger Van Keer, Solution of contaminant transport with adsorption in porous media by the method of characteristics
- Sébastien Boyaval, Tony Lelièvre, Claude Mangoubi, Free-energy-dissipative schemes for the Oldroyd-B model