Lagrangian and moving mesh methods for the convection diffusion equation
Konstantinos Chrysafinos; Noel J. Walkington
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 1, page 25-55
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topChrysafinos, Konstantinos, and Walkington, Noel J.. "Lagrangian and moving mesh methods for the convection diffusion equation." ESAIM: Mathematical Modelling and Numerical Analysis 42.1 (2008): 25-55. <http://eudml.org/doc/250339>.
@article{Chrysafinos2008,
abstract = {
We propose and analyze a semi Lagrangian method for the
convection-diffusion equation. Error estimates for both semi and
fully discrete finite element approximations are obtained for
convection dominated flows. The estimates are posed in terms of
the projections constructed in [Chrysafinos and Walkington, SIAM J. Numer. Anal. 43 (2006) 2478–2499; Chrysafinos and Walkington, SIAM J. Numer. Anal. 44 (2006) 349–366] and the
dependence of various constants upon the diffusion parameter is
characterized. Error estimates independent of the diffusion
constant are obtained when the velocity field is computed exactly.
},
author = {Chrysafinos, Konstantinos, Walkington, Noel J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Convection diffusion; moving meshes; Lagrangian formulation.; Lagrangian formulation; convection-diffusion equation; error estimates; finite element; convection dominated flows},
language = {eng},
month = {1},
number = {1},
pages = {25-55},
publisher = {EDP Sciences},
title = {Lagrangian and moving mesh methods for the convection diffusion equation},
url = {http://eudml.org/doc/250339},
volume = {42},
year = {2008},
}
TY - JOUR
AU - Chrysafinos, Konstantinos
AU - Walkington, Noel J.
TI - Lagrangian and moving mesh methods for the convection diffusion equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2008/1//
PB - EDP Sciences
VL - 42
IS - 1
SP - 25
EP - 55
AB -
We propose and analyze a semi Lagrangian method for the
convection-diffusion equation. Error estimates for both semi and
fully discrete finite element approximations are obtained for
convection dominated flows. The estimates are posed in terms of
the projections constructed in [Chrysafinos and Walkington, SIAM J. Numer. Anal. 43 (2006) 2478–2499; Chrysafinos and Walkington, SIAM J. Numer. Anal. 44 (2006) 349–366] and the
dependence of various constants upon the diffusion parameter is
characterized. Error estimates independent of the diffusion
constant are obtained when the velocity field is computed exactly.
LA - eng
KW - Convection diffusion; moving meshes; Lagrangian formulation.; Lagrangian formulation; convection-diffusion equation; error estimates; finite element; convection dominated flows
UR - http://eudml.org/doc/250339
ER -
References
top- R. Balasubramaniam and K. Mutsuto, Lagrangian finite element analysis applied to viscous free surface fluid flow. Int. J. Numer. Methods Fluids7 (1987) 953–984.
- R.E. Bank and R.F. Santos, Analysis of some moving space-time finite element methods. SIAM J. Numer. Anal. 30 (1993) 1–18.
- M. Bause and P. Knabner, Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems. SIAM J. Numer. Anal. 39 (2002) 1954–1984 (electronic).
- J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1(Ω). Math. Comp. 71 (2002) 147–156 (electronic).
- N.N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite element code. II. In two dimensions. SIAM J. Sci. Comput. 19 (1998) 766–798 (electronic).
- C. Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces. Math. Comp. 71 (2002) 157–163 (electronic).
- K. Chrysafinos and J.N. Walkington, Error estimates for the discontinuous Galerkin methods for implicit parabolic equations. SIAM J. Numer. Anal. 43 (2006) 2478–2499.
- K. Chrysafinos and J.N. Walkington, Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349–366.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978).
- P. Constantin, An Eulerian-Lagrangian approach for incompressible fluids: local theory. J. Amer. Math. Soc. 14 (2001) 263–278 (electronic).
- P. Constantin, An Eulerian-Lagrangian approach to the Navier-Stokes equations. Comm. Math. Phys. 216 (2001) 663–686.
- M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry. Springer (2000).
- J. Douglas, Jr., and T.F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19 (1982) 871–885.
- T.F. Dupont and Y. Liu, Symmetric error estimates for moving mesh Galerkin methods for advection-diffusion equations. SIAM J. Numer. Anal. 40 (2002) 914–927 (electronic).
- M. Falcone and R. Ferretti, Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35 (1998) 909–940 (electronic).
- Y. Liu, R.E. Bank, T.F. Dupont, S. Garcia and R.F. Santos, Symmetric error estimates for moving mesh mixed methods for advection-diffusion equations. SIAM J. Numer. Anal. 40 (2003) 2270–2291.
- I. Malcevic and O. Ghattas, Dynamic-mesh finite element method for Lagrangian computational fluid dynamics. Finite Elem. Anal. Des. 38 (2002) 965–982.
- H. Masahiro, H. Katsumori and K. Mutsuto, Lagrangian finite element method for free surface Navier-Stokes flow using fractional step methods. Int. J. Numer. Methods Fluids13 (1991) 841–855.
- K. Miller, Moving finite elements. II. SIAM J. Numer. Anal. 18 (1981) 1033–1057.
- K. Miller and R.N. Miller, Moving finite elements. I. SIAM J. Numer. Anal. 18 (1981) 1019–1032.
- K.W. Morton, A. Priestley and E. Süli, Stability of the Lagrange-Galerkin method with nonexact integration. RAIRO Modél. Math. Anal. Numér. 22 (1988) 625–653.
- J. Ruppert, A new and simple algorithm for quality 2-dimensional mesh generation, in Third Annual ACM-SIAM Symposium on Discrete Algorithms (1992) 83–92.
- V. Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics25. Springer-Verlag, Berlin (1997).
Citations in EuDML Documents
top- Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
- Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
- Konstantinos Chrysafinos, Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.