Solution of contaminant transport with adsorption in porous media by the method of characteristics

Jozef Kacur; Roger Van Keer

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2001)

  • Volume: 35, Issue: 5, page 981-1006
  • ISSN: 0764-583X

Abstract

top
A new approximation scheme is presented for the mathematical model of convection-diffusion and adsorption. The method is based on the relaxation method and the method of characteristics. We prove the convergence of the method and present some numerical experiments in 1D. The results can be applied to the model of contaminant transport in porous media with multi-site, equilibrium and non-equilibrium type of adsorption.

How to cite

top

Kacur, Jozef, and Keer, Roger Van. "Solution of contaminant transport with adsorption in porous media by the method of characteristics." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.5 (2001): 981-1006. <http://eudml.org/doc/194084>.

@article{Kacur2001,
abstract = {A new approximation scheme is presented for the mathematical model of convection-diffusion and adsorption. The method is based on the relaxation method and the method of characteristics. We prove the convergence of the method and present some numerical experiments in 1D. The results can be applied to the model of contaminant transport in porous media with multi-site, equilibrium and non-equilibrium type of adsorption.},
author = {Kacur, Jozef, Keer, Roger Van},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {relaxation method; method of characteristics; contaminant transport; convection-diffusion with adsorption; convection-diffusion; adsorption; convergence; porous media},
language = {eng},
number = {5},
pages = {981-1006},
publisher = {EDP-Sciences},
title = {Solution of contaminant transport with adsorption in porous media by the method of characteristics},
url = {http://eudml.org/doc/194084},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Kacur, Jozef
AU - Keer, Roger Van
TI - Solution of contaminant transport with adsorption in porous media by the method of characteristics
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 5
SP - 981
EP - 1006
AB - A new approximation scheme is presented for the mathematical model of convection-diffusion and adsorption. The method is based on the relaxation method and the method of characteristics. We prove the convergence of the method and present some numerical experiments in 1D. The results can be applied to the model of contaminant transport in porous media with multi-site, equilibrium and non-equilibrium type of adsorption.
LA - eng
KW - relaxation method; method of characteristics; contaminant transport; convection-diffusion with adsorption; convection-diffusion; adsorption; convergence; porous media
UR - http://eudml.org/doc/194084
ER -

References

top
  1. [1] H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311–341. Zbl0497.35049
  2. [2] J.W. Barrett and P. Knabner, Finite element approximation of transport of reactive solutes in porous media. Part i: error estimates for nonequilibrium adsorption processes. SIAM J. Numer. Anal. 34 (1997) 201–227. Zbl0870.76039
  3. [3] J.W. Barrett and P. Knabner, Finite element approximation of transport of reactive solutes in porous media. Part ii: error estimates for equilibrium adsorption processes. SIAM J. Numer. Anal. 34 (1997) 455–479. Zbl0904.76039
  4. [4] J.W Barrett and P. Knabner, An improved error bound for a Lagrange-Galerkin method for contaminant transport with non-Lipschitzian adsorption kinetics. SIAM J. Numer. Anal. 35 (1998) 1862–1882. Zbl0911.65078
  5. [5] J. Bear, Dynamics of Fluids in Porous Media. Elsevier, New York (1972). Zbl1191.76001
  6. [6] R. Bermejo, Analysis of an algorithm for the Galerkin-characteristics method. Numer. Math. 60 (1991) 163–194. Zbl0723.65073
  7. [7] R. Bermejo, A Galerkin-characteristics algorithm for transport-diffusion equation. SIAM J. Numer. Anal. 32 (1995) 425–455. Zbl0854.65083
  8. [8] C.N. Dawson, Godunov-mixed methods for advection diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993) 1315–1332. Zbl0791.65062
  9. [9] C.N. Dawson, Analysis of an upwind-mixed finite element method for nonlinear contaminant transport equations. SIAM J. Numer. Anal. 35 (1998) 1709–1724. Zbl0954.76043
  10. [10] C.N. Dawson, C.J. van Duijn, and R.E. Grundy, Large time asymptotics in contaminant transport in porous media. SIAM J. Appl. Math. 56 (1996) 965–993. Zbl0862.35012
  11. [11] C.N. Dawson, C.J. van Duijn, and M.F. Wheeler, Characteristic-Galerkin methods for contaminant transport with non-equilibrium adsorption kinetics. SIAM J. Numer. Anal. 31 (1994) 982–999. Zbl0808.76046
  12. [12] R Douglas and T.F. Russel, Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19 (1982) 871–885. Zbl0492.65051
  13. [13] N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory. John Wiley & Sons Ltd., New York (1959). Zbl0635.47001MR1009162
  14. [14] R.E. Grundy, C.J. van Duijn, and C.N. Dawson, Asymptotic profiles with finite mass in one-dimensional contaminant transport through porous media. Quart. J. Mech. Appl. Math. 1 (1994) 69–106. Zbl0821.76076
  15. [15] W. Jäger and J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605–627. Zbl0837.65103
  16. [16] J. Kačur, Solution of some free boundary problems by relaxation schemes. SIAM J. Numer. Anal. 36 (1999) 290–316. Zbl0924.65090
  17. [17] J. Kačur, Solution to strongly nonlinear parabolic problems by a linear approximation scheme. IMA J. Numer. Anal. 19 (1999) 119–154. Zbl0946.65145
  18. [18] J. Kačur and S. Luckhaus, Approximation of degenerate parabolic systems by nondegenerate elliptic and parabolic systems. Appl. Numer. Math. 25 (1997) 1–21. Zbl0894.65043
  19. [19] J. Kačur, Solution of convection-diffusion problems with the memory terms, in Applied Mathematical Analysis, A. Sequiera, H. Beirao de Veiga, and J.H. Videman, Eds., Kluwer Academic, Plenum Publ., New York (1999) 199–212. Zbl0953.65098
  20. [20] P. Knabner, Mathematische Modelle für den Transport gelöstes Stoffe in sorbierenden Porösen Medien. Habilitationschrift, University of Augsburg, Germany (1989). Zbl0704.35072
  21. [21] P. Knabner and F. Otto, Solute transport in porous media with equilibrium and nonequilibrium multiple site adsorption: uniqueness. To appear. Zbl0958.35074
  22. [22] A. Kufner, O. John, and S. Fučík, Function Spaces. Noordhoff International Publishing, Leyden; Publishing House of the Czechoslovak Academy of Sciences, Prague (1977). Zbl0364.46022MR482102
  23. [23] K.W. Morton, A. Priestly, and E. Suli, Stability of the Lagrange-Galerkin method with non-exact integration. RAIRO Modél. Math. Anal. Numér. 4 (1988) 225–250. Zbl0661.65114
  24. [24] J. Nečas, Les méthodes directes en théorie des équations elliptiques. Academia, Prague (1967). MR227584
  25. [25] F. Otto, L1-contraction and uniqueness for quasilinear elliptic-parabolic equations. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 105–110. Zbl0845.35056
  26. [26] P. Pironneau, On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math. 38 (1982) 309–332. Zbl0505.76100
  27. [27] C.J. van Duijn and P. Knabner, Solute transport in porous media with equilibrium and nonequilibrium multiple site adsorption: Traveling waves. J. Reine Angew. Math. 415 (1991) 1–49. Zbl0716.73076

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.