The -version of the finite element method for elliptic equations of order
- Volume: 24, Issue: 2, page 265-304
- ISSN: 0764-583X
Access Full Article
topHow to cite
topSuri, Manil. "The $p$-version of the finite element method for elliptic equations of order $2l$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.2 (1990): 265-304. <http://eudml.org/doc/193597>.
@article{Suri1990,
author = {Suri, Manil},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {singular functions; higher order elliptic equations; error estimation; p- version of the finite element method; optimal order of convergence},
language = {eng},
number = {2},
pages = {265-304},
publisher = {Dunod},
title = {The $p$-version of the finite element method for elliptic equations of order $2l$},
url = {http://eudml.org/doc/193597},
volume = {24},
year = {1990},
}
TY - JOUR
AU - Suri, Manil
TI - The $p$-version of the finite element method for elliptic equations of order $2l$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 2
SP - 265
EP - 304
LA - eng
KW - singular functions; higher order elliptic equations; error estimation; p- version of the finite element method; optimal order of convergence
UR - http://eudml.org/doc/193597
ER -
References
top- [1] I. BABUSKA and M. SURI, The pand h-p versions of the finite element method. An overview, Technical Note BN-1101, Institute for Phy. Sci. and Tech., 1989, To appear in Computer Methods in Applied Mechanics and Engineering (1990).
- [2] I. BABUSKA and M. R. DORR, Error estimates for the combined h and p version of the finite element method, Numer. Math., 37 (1981), pp. 252-277. Zbl0487.65058MR623044
- [3] I. BABUSKA and M. SURI, The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal., 24 9 No. 4 (1987), pp. 750-776. Zbl0637.65103MR899702
- [4] I. BABUSKA and M. SURI, 9 The h-p version of the finite element method with quasiuniform meshes, RAIRO Math. Mod. and Numer. Anal., 21, No. 2 (1987), pp. 199-238. Zbl0623.65113MR896241
- [5] I. BABUSKA and B. A. SZABO, Lectures notes on finite element analysis, In préparation. Zbl0792.73003
- [6] I. BABUSKA, B. A. SZABOand I. N. KATZ, The p-version of the finite element method, SIAM J. Numer. Anal., 18 (1981), pp.515-545. Zbl0487.65059MR615529
- [7] I. BERGH and J. LOFTSTROM, Interpolation Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0344.46071
- [8] C. K. CHUI, Multivariate Splines, SIAM, Philadelphia, 1988. Zbl0687.41018MR1033490
- [9] M. R. DORR, The approximation theory for the p-version of the finite element method, SIAM J. Numer. Anal., 21 (1984), pp. 1180-1207. Zbl0572.65074MR765514
- [10] M. R. DORR, The approximation of solutions of elliptic boundary-values problems via the p-version of the finite element method, SIAM J. Numer. Anal., 23 (1986), pp. 58-77. Zbl0617.65109MR821906
- [11] I. S. GRADSHTEYNand I. M. RYZHIK, Table of Integrals, Series and Products, Academie Press, London, NewYork, 1965. Zbl0521.33001MR197789
- [12] W. GUI and I. BABUSKA, The h, p and h-p versions of the finite element method in one dimension, part 1 : the error analysis of the p-versioc ; part 2 : the error analysis of the h and h-p versions; part 3 : the adaptive h-p version, Numer.Math., 49 (1986), pp.577-683. Zbl0614.65089MR861522
- [13] B. GUO and I. BABUSKA, The h-p version of the finite element method I, Computational Mechanics, 1 (1986), pp. 21-41. Zbl0634.73058
- [14] B. GUO and I. BABUSKA, The h-p version of the finite element method II, Computational Mechanics, 2 (1986), pp. 203-226. Zbl0634.73059
- [15] G. H. HARDY, T. E. LITTLEWOOD and G. POLYA, Inequalitie, Cambridge University Press, Cambridge, 1934. Zbl0010.10703JFM60.0169.01
- [16] I. N. KATZ and D. W. WANG, The p-version of the finite element method for problems requiring C1-continuity, SIAM J. Numer. Anal., 22 (1985), pp. 1082-1106. Zbl0602.65086MR811185
- [17] V. A. KONDRATEV, Boundary-value problems for elliptic equations in domains with conic or corner points, Trans. Moscow Math. Soc, 16 (1967), pp.227-313. Zbl0194.13405MR226187
- [18] V. A. KONDRATEV and O. A. OLEINIK, Boundary-value problems for partial differential equations in non-smooth domains, Russian Math. Surveys, 38 (1983), pp.1-86. Zbl0548.35018
- [19] E. REISSNER, A twelfth order theory of transverse bending of transversly isotropic plates, Z. Angew. Math. Mech., 63 (1983), pp.285-289. Zbl0535.73039
- [20] E. REISSNER, Reflections on the theory of elastic plates, Appl. Mech. Rev., 38 (1985), p. 11.
- [21] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. Zbl0207.13501MR290095
- [22] P. K. SUETIN, Classical Orthogonal Polynomials, Moscow, 1979 (In Russian). Zbl0449.33001MR548727
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.