The p -version of the finite element method for elliptic equations of order 2 l

Manil Suri

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 2, page 265-304
  • ISSN: 0764-583X

How to cite

top

Suri, Manil. "The $p$-version of the finite element method for elliptic equations of order $2l$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.2 (1990): 265-304. <http://eudml.org/doc/193597>.

@article{Suri1990,
author = {Suri, Manil},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {singular functions; higher order elliptic equations; error estimation; p- version of the finite element method; optimal order of convergence},
language = {eng},
number = {2},
pages = {265-304},
publisher = {Dunod},
title = {The $p$-version of the finite element method for elliptic equations of order $2l$},
url = {http://eudml.org/doc/193597},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Suri, Manil
TI - The $p$-version of the finite element method for elliptic equations of order $2l$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 2
SP - 265
EP - 304
LA - eng
KW - singular functions; higher order elliptic equations; error estimation; p- version of the finite element method; optimal order of convergence
UR - http://eudml.org/doc/193597
ER -

References

top
  1. [1] I. BABUSKA and M. SURI, The pand h-p versions of the finite element method. An overview, Technical Note BN-1101, Institute for Phy. Sci. and Tech., 1989, To appear in Computer Methods in Applied Mechanics and Engineering (1990). 
  2. [2] I. BABUSKA and M. R. DORR, Error estimates for the combined h and p version of the finite element method, Numer. Math., 37 (1981), pp. 252-277. Zbl0487.65058MR623044
  3. [3] I. BABUSKA and M. SURI, The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal., 24 9 No. 4 (1987), pp. 750-776. Zbl0637.65103MR899702
  4. [4] I. BABUSKA and M. SURI, 9 The h-p version of the finite element method with quasiuniform meshes, RAIRO Math. Mod. and Numer. Anal., 21, No. 2 (1987), pp. 199-238. Zbl0623.65113MR896241
  5. [5] I. BABUSKA and B. A. SZABO, Lectures notes on finite element analysis, In préparation. Zbl0792.73003
  6. [6] I. BABUSKA, B. A. SZABOand I. N. KATZ, The p-version of the finite element method, SIAM J. Numer. Anal., 18 (1981), pp.515-545. Zbl0487.65059MR615529
  7. [7] I. BERGH and J. LOFTSTROM, Interpolation Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0344.46071
  8. [8] C. K. CHUI, Multivariate Splines, SIAM, Philadelphia, 1988. Zbl0687.41018MR1033490
  9. [9] M. R. DORR, The approximation theory for the p-version of the finite element method, SIAM J. Numer. Anal., 21 (1984), pp. 1180-1207. Zbl0572.65074MR765514
  10. [10] M. R. DORR, The approximation of solutions of elliptic boundary-values problems via the p-version of the finite element method, SIAM J. Numer. Anal., 23 (1986), pp. 58-77. Zbl0617.65109MR821906
  11. [11] I. S. GRADSHTEYNand I. M. RYZHIK, Table of Integrals, Series and Products, Academie Press, London, NewYork, 1965. Zbl0521.33001MR197789
  12. [12] W. GUI and I. BABUSKA, The h, p and h-p versions of the finite element method in one dimension, part 1 : the error analysis of the p-versioc ; part 2 : the error analysis of the h and h-p versions; part 3 : the adaptive h-p version, Numer.Math., 49 (1986), pp.577-683. Zbl0614.65089MR861522
  13. [13] B. GUO and I. BABUSKA, The h-p version of the finite element method I, Computational Mechanics, 1 (1986), pp. 21-41. Zbl0634.73058
  14. [14] B. GUO and I. BABUSKA, The h-p version of the finite element method II, Computational Mechanics, 2 (1986), pp. 203-226. Zbl0634.73059
  15. [15] G. H. HARDY, T. E. LITTLEWOOD and G. POLYA, Inequalitie, Cambridge University Press, Cambridge, 1934. Zbl0010.10703JFM60.0169.01
  16. [16] I. N. KATZ and D. W. WANG, The p-version of the finite element method for problems requiring C1-continuity, SIAM J. Numer. Anal., 22 (1985), pp. 1082-1106. Zbl0602.65086MR811185
  17. [17] V. A. KONDRATEV, Boundary-value problems for elliptic equations in domains with conic or corner points, Trans. Moscow Math. Soc, 16 (1967), pp.227-313. Zbl0194.13405MR226187
  18. [18] V. A. KONDRATEV and O. A. OLEINIK, Boundary-value problems for partial differential equations in non-smooth domains, Russian Math. Surveys, 38 (1983), pp.1-86. Zbl0548.35018
  19. [19] E. REISSNER, A twelfth order theory of transverse bending of transversly isotropic plates, Z. Angew. Math. Mech., 63 (1983), pp.285-289. Zbl0535.73039
  20. [20] E. REISSNER, Reflections on the theory of elastic plates, Appl. Mech. Rev., 38 (1985), p. 11. 
  21. [21] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. Zbl0207.13501MR290095
  22. [22] P. K. SUETIN, Classical Orthogonal Polynomials, Moscow, 1979 (In Russian). Zbl0449.33001MR548727

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.