Divergence stability in connection with the p -version of the finite element method

S. Jensen; M. Vogelius

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 6, page 737-764
  • ISSN: 0764-583X

How to cite

top

Jensen, S., and Vogelius, M.. "Divergence stability in connection with the $p$-version of the finite element method." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.6 (1990): 737-764. <http://eudml.org/doc/193614>.

@article{Jensen1990,
author = {Jensen, S., Vogelius, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stability; Stokes equations; velocity spaces; pressure spaces; quasi- optimal error estimates; maximal right inverses for the divergence operator},
language = {eng},
number = {6},
pages = {737-764},
publisher = {Dunod},
title = {Divergence stability in connection with the $p$-version of the finite element method},
url = {http://eudml.org/doc/193614},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Jensen, S.
AU - Vogelius, M.
TI - Divergence stability in connection with the $p$-version of the finite element method
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 6
SP - 737
EP - 764
LA - eng
KW - stability; Stokes equations; velocity spaces; pressure spaces; quasi- optimal error estimates; maximal right inverses for the divergence operator
UR - http://eudml.org/doc/193614
ER -

References

top
  1. [1] D. N. ARNOLD, L. R. SCOTT and M. VOGELIUS, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon. Annali Scuola Norm. Sup. Pisa, Serie 4, 15 (1988), pp. 169-192. Zbl0702.35208MR1007396
  2. [2] I. BABUŠKA, Error-bounds for the finite element method. Numerische Mathematik, 16 (1971), pp. 322-333. Zbl0214.42001MR288971
  3. [3] I. BABUŠKA, B. A. SZABO and I. N. KATZ, The p-version of the finite element method. SIAM J. Numer. Anal., 18 (1981), pp. 515-545. Zbl0487.65059MR615529
  4. [4] M. BERCOVIER and O. PIRONNEAU, Error estimates for the finite element method solution of the Stokes problem in the primitive variables. Numerische Mathematik, 33 (1979), pp. 211-224. Zbl0423.65058MR549450
  5. [5] J. BOLAND and R. A. NICOLAIDES, On the stability of Bilinear-Constant Velocity-Pressure Finite Elements. Numerische Mathematik, 44 (1984), pp. 219-222. Zbl0544.76030MR753954
  6. [6] J. BOLAND and R. A. NICOLAIDES, Stable and semistable low order finite elements for viscous flows. SIAM J. Numer. Anal., 22 (1985), pp. 474-492. Zbl0578.65123MR787571
  7. [7] F. BREZZI, On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrangian multipliers, RAIRO 8 (1974), pp. 129-151. Zbl0338.90047MR365287
  8. [8] C. CANUTO, Y. MADAY and A. QUARTERONI, Combined Finite Element and Spectral approximation of the Navier-Stokes equations. Numerische Mathematik, 44 (1984), pp. 201-217. Zbl0614.76021MR753953
  9. [9] V. GIRAULT and P.-A. RAVIART, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, 1986. Zbl0585.65077MR851383
  10. [10] D. GOTTLIEB and S. ORSZAG, Numerical Analysis of Spectral Methods : Theory and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, 26. SIAM, 1977. Zbl0412.65058MR520152
  11. [11] P. GRISVARD, Elliptic Problems in Nonsmooth Domains. Pitman, 1985. Zbl0695.35060MR775683
  12. [12] C. JOHNSON and J. PITKÄRANTA, Analysis of some mixed finite element methods related to reduced integration. Math, of Comp., 38 (1982), pp. 375-400. Zbl0482.65058MR645657
  13. [13] R. B. KELLOGG and J. E. OSBORN, A regularity result for the Stokes problem in a convex polygon. J. Functional Analysis, 21 (1976), pp. 397-431. Zbl0317.35037MR404849
  14. [14] N. N. LEBEDEV, Special Functions and Their Applications, Prentice-Hall, 1965. Zbl0131.07002MR174795
  15. [15] Y. MADAY, Analysis of spectral projectors in multi-dimensional domains. 
  16. [16] E. M. RONQUIST, Optimal spectral element method for the unsteady three-dimensional incompressible Navier-Stokes equations. Ph. D. thesis, M.I.T., 1988. 
  17. [17] G. SACCHI LANDRIANI, Spectral tau approximation of the two-dimensional Stokes problem. Numer. Math., 52 (1988), pp. 683-699. Zbl0629.76037MR946383
  18. [18] L. R. SCOTT and M. VOGELIUS, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. Math. Modelling Num. Anal., 19 (1985), pp. 111-143. Zbl0608.65013MR813691
  19. [19] L. R. SCOTT and M. VOGELIUS, Conforming Finite Element Methods for incompressible and nearly incompressible continua. Lectures in Applied Mathematics, 22, pp. 221-244, AMS, 1985. Zbl0582.76028MR818790
  20. [20] M. SURI, On the stability and convergence of higher order mixed finite element methods for second order elliptic problems. Math. Comput., 54 (1990), pp. 1-19. Zbl0687.65101MR990603
  21. [21] B. A. SZABO, I. BABUŠKA and B. K. CHAYAPATHY, Stress computations for nearly incompressible materials. Int. J. Numer. Methods Eng., 28 (1990), pp. 2175-2190. Zbl0718.73083
  22. [22] R. VERFÜHRT, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO, Numer. Anal., 18 (1984), pp 175-182. Zbl0557.76037MR743884
  23. [23] M. VOGELIUS, An analysis of the p-Version of the Finite Element Method for nearly incompressible materials. Uniformly valid, optimal error estimates. Numerische Mathematik, 41 (1983), pp. 39-53. Zbl0504.65061MR696549
  24. [24] M. VOGELIUS, A right inverse for the divergence operator in spaces of piecewise polynomials. Application to the p-Version of the Finite Element Method. Numerische Mathematik, 41 (1983), pp. 19-37. Zbl0504.65060MR696548
  25. [25] C. BERNARDI, Y. MADAY and B. METIVET, Spectral approximation of the periodic-nonperiodic Navier-Stokes equations. Numerische Mathematik, 51 (1987), pp. 655-700. Zbl0583.65085MR914344
  26. [26] C. BERNARDI, Y. MADAY and B. METIVET, Calcul de la pression dans la résolution spectrale du problème de Stokes. La Recherche Aérospatiale, 1 (1987), pp. 1-21. Zbl0642.76037MR904608
  27. [27] M. SURI, The p-version of the finite element method for elliptic equations of order 2 l. M2AN, 24 (1990), pp. 265-304. Zbl0711.65094MR1052150

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.