A new approach of Timoshenko's beam theory by asymptotic expansion method

L. Trabucho; J. M. Viaño

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 5, page 651-680
  • ISSN: 0764-583X

How to cite

top

Trabucho, L., and Viaño, J. M.. "A new approach of Timoshenko's beam theory by asymptotic expansion method." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.5 (1990): 651-680. <http://eudml.org/doc/193609>.

@article{Trabucho1990,
author = {Trabucho, L., Viaño, J. M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {perturbation method; mixed variational formulation; three-dimensional linearized elasticity; Timoshenko's constants},
language = {eng},
number = {5},
pages = {651-680},
publisher = {Dunod},
title = {A new approach of Timoshenko's beam theory by asymptotic expansion method},
url = {http://eudml.org/doc/193609},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Trabucho, L.
AU - Viaño, J. M.
TI - A new approach of Timoshenko's beam theory by asymptotic expansion method
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 5
SP - 651
EP - 680
LA - eng
KW - perturbation method; mixed variational formulation; three-dimensional linearized elasticity; Timoshenko's constants
UR - http://eudml.org/doc/193609
ER -

References

top
  1. [1] I. AGANOVIC, Z. TUTEK, A justification of the one-dimensional model of elastic beam. Math. Methods in Applied Sci., 8, 1986, pp. 1-14. Zbl0603.73056MR870989
  2. [2] A. BERMUDEZ, J. M. VIAÑO, Une justification des équations de la thermoélasticite des poutres à section variable par des méthodes asymptotiques, RAIRO, Analyse Numérique, 18, 1984, pp. 347-376. Zbl0572.73053MR761673
  3. [3] F. BREZZI, On the existence uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO, Analyse Numérique, Sér Rouge, 2, 1974, pp. 129-151. Zbl0338.90047MR365287
  4. [4] D. CAILLERIE, The effect of a thin inclusion of high rigidity in a elastic body, Math. Methods in Applied Sci., 2, 1980, pp 251-270. Zbl0446.73014MR581205
  5. [5] P. G. CIARLET, A justification of the von Karman equations. Arch. Rat. Mcch. Anal., 73, 1980, pp 349-389 Zbl0443.73034MR569597
  6. [6] P. G. CIARLET, « Recent progress in the two-dimensional approximation of three-dimensional plate models in nonlinear elasticity» In Numerical Approximation of Partial Differential Equations E. L. Ortiz, Editor, North-Holland, Amsterdam, 1987, pp 3-19. Zbl0612.73060MR899776
  7. [7] P. G. CIARLET, P. DESTUYNDER, A justification of the two dimensional linear plate model. J. Mécanique, 18, 1979, pp 315-344. Zbl0415.73072MR533827
  8. [8] P. G. CIARLET, P. DESTUYNDER, A justification of a nonlinear model in place theory. Comp. Methods Appl. Mech. Engrg. 17/18, 1979, pp. 227-258. Zbl0405.73050MR533827
  9. [9] A. CIMETIÈRE, G. GEYMONAT, H. LEDRET, A. RAOULT, Z. TUTEK, Une dérivation d'un modèle non lineaire de poutres à partir de l'élasticite tridimensionelle. C. R. A. S., tome 302, Sér. I, n° 19, 1986, pp. 697-700. Zbl0593.73046MR847757
  10. [10] P. DESTUYNDER, Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Thèse, Univ. P. et M. Curie, Paris, 1980. 
  11. [11] P. DESTUYNDER, Une théorie asymptotique de plaque minces en élasticité lineaire. Masson, Paris, 1986. Zbl0627.73064MR830660
  12. [12] G. DUVAUT, J. L. LIONS, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, 1976. Zbl0331.35002MR521262
  13. [13] C. DYM, I. SHAMES, Solid Mechanics, A variational approch. McGraw-Hill, New York, 1973. 
  14. [14] B. M. FRAEJIS DE VEUBEKE, A course in elasticity Applied Mathematical Sciences, Vol. 29, Springer-Verlag, Berlin, 1979. Zbl0419.73001MR533738
  15. [15] Y. C. FUNG, Foundations of Solid Mechanics Prentice-Hall, Englewood Cliffs, N. J., 1965. 
  16. [16] I. HLAVACEK, J. NECAS, Mathematical Theory of Elastic and Elasto-Plastic Bodies; An Introduction Elsevier, New York, 1981. Zbl0448.73009MR600655
  17. [17] J. L. LIONS, Perturbations singulières dans les problèmes aux limites et en contrôle optimal Lect. Notes in Math., 323, Springer-Verlag, Berlin, 1973. Zbl0268.49001MR600331
  18. [18] R. D. MINDLIN, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech., 18, 1951, pp. 31 38. Zbl0044.40101
  19. [19] A. RAOULT, Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation. Annali di Mathematica Pura ad Applicata, 139, 1985, pp. 361-400. Zbl0596.73033MR798182
  20. [20] A. RIGOLOT, Sur une théorie asymptotique des poutres. Thèse, Univ. P. et M. Curie, Paris, 1976. Zbl0257.73013
  21. [21] A. RIGOLOT, Sur une théorie asymtotique des poutres. J. Mécanique, 11, 1972, pp. 673-703. Zbl0257.73013MR368552
  22. [22] A. RIGOLOT, Sur la déformation due à l'effort tranchant dans les poutres droites élastiques. Ann. Inst. Techn. Bât. Trav. Publ., n° 363, 1978, pp 34-52. 
  23. [23] S. P. TIMOSHENKO, On the correction for shear of the differential equation for transverse vibration of prismatic bars. Phil Mag, Ser 6, 41, 1921, pp 744-746. 
  24. [24] L. TRABUCHO, J. M. VIANO, « Derivation of generalized models for linear elastic beams by asymptotic expansion methods » In Applications of Multiple Scaling to Mechanics (P. G. Ciarlet and E. Sanchez-Palencia, Editors), Masson, Paris, 1987, pp 302-315. Zbl0646.73024MR902000
  25. [25] L. TRABUCHO, J. M. VIANO, Dérivation de modèles généralisés de poutres en élasticité par méthode asymptotique. C. R. Acad. Sc. Paris, tome 304, Ser I, n° 11, 1987. Zbl0627.73015MR886729
  26. [26] L. TRABUCHO, J. M. VIANO, Existence and characterization of higher order terms in an asymptotic expansion method for linearized elastic beams. J. Asymptotic Analysis, 2, 1989, pp. 223-255. Zbl0850.73126MR1020349
  27. [27] L. TRABUCHO, J. M. VIAÑO, A dérivation of generalized Saint Venat's torsion theory from three dimensional elasticity by asymptotic expansion methods. J. Applicable Analysis, 31, 1988, pp 129-148. Zbl0637.73003MR1017507
  28. [28] L. TRABUCHO, J. M. VIAÑO, A justification of Vlasov s bending-torsion theory in elastic beams (to appear). Zbl0850.73126
  29. [29] L. TRABUCHO, J. M. VIAÑO, Critical cross sections in Timoshenko's beam theory (to appear). Zbl0777.73028
  30. [30] J. M. VIAÑO, Contribution à l'étude des modèles bidimensionels en thermoélasticité de plaques d'épaisseur non constante. Thèse, Univ. P. et M. Curie, Paris, 1983. 
  31. [31] J. M. VIAÑO, « Generalizacion y justificacion de modelos unilaterales en vigas elàsticas sobre fundacion » In. Actas del VIII C. E. D. Y. A., Santander, España, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.