A Galerkin spectral approximation in linearized beam theory

B. Miara; L. Trabucho

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 3, page 425-446
  • ISSN: 0764-583X

How to cite

top

Miara, B., and Trabucho, L.. "A Galerkin spectral approximation in linearized beam theory." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.3 (1992): 425-446. <http://eudml.org/doc/193670>.

@article{Miara1992,
author = {Miara, B., Trabucho, L.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error minimization; displacement field; basis functions},
language = {eng},
number = {3},
pages = {425-446},
publisher = {Dunod},
title = {A Galerkin spectral approximation in linearized beam theory},
url = {http://eudml.org/doc/193670},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Miara, B.
AU - Trabucho, L.
TI - A Galerkin spectral approximation in linearized beam theory
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 3
SP - 425
EP - 446
LA - eng
KW - error minimization; displacement field; basis functions
UR - http://eudml.org/doc/193670
ER -

References

top
  1. I. AGANOVIČ, Z. TUTEK [ 1987], A justification of the one dimensional model of elastic beam Math. Methods Appl. Sci., 8, pp. 1-14. Zbl0603.73056MR870989
  2. A. BERMUDEZ, J. VIAÑO [ 1984], Une justification des équations de la thermoélasticité des poutres à section variable. RAIRO Model. Math. Anal. Numér., 18, pp. 347-376. Zbl0572.73053MR761673
  3. P. G. CIARLET [ 1988], Mathematical Elasticity, Vol I : Three-Dimensional Elasticity, North-Holland, Amsterdam. Zbl0648.73014MR936420
  4. P. G. CIARLET, P. DESTUYNDER [ 1979a], A justification of the two-dimensional linear plate model J. de Mécanique, 18, pp. 315-344. Zbl0415.73072MR533827
  5. P. G. CIARLET, P. DESTUYNDER [ 1979b], A justification of a nonlinear model in plate theory Comput. Methods Appl. Mech. Engrg., 17/18, pp. 227-258. Zbl0405.73050
  6. M. L. MASCARENHAS, L. TRABUCHO [ 1990], Homogenization and Galerkin approximation in beam theories (to appear). Zbl0699.73005MR1116177
  7. B. MIARA [ 1989], Optimal spectral approximation in linearized plate theory Appl. Anal., 31, pp. 291-307. Zbl0645.35002MR1017518
  8. J. NEČAS [ 1989], Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris. 
  9. L. TRABUCHO, J. VIAÑO [ 1987], Derivation of generalized models for linear elastic beams by asymptotic expansion methods In Applications of Multiple Scalings in Mechanics (P. G. Ciarlet and E. Sanchez-Palencia, Ed.), Masson, 302-315. Zbl0646.73024MR902000
  10. L. TRABUCHO, J VIAÑO [ 1988a], A derivation of generalized Saint Venant's torsion theory from three-dimensional elasticity by asymptotic expansion methods Appl. Anal. 13, 129-148. Zbl0637.73003MR1017507
  11. L. TRABUCHO, J. VIAÑO [ 1988b], A new approach of Timoshenko's beam theory by asymptotic expansion methods RAIRO Modél Math Anal. Num (to appear). Zbl0777.73028MR1076964
  12. L. TRABUCHO, J. VIAÑO [ 1989], Existence and characterization of higher order terms in an asymptotic expansion method for linearized elastic beams Asymptotic Anal. 2, 223-255. Zbl0850.73126MR1020349
  13. M. VOGELIUS, I. BABUŠKA [ 1981], On a dimensional reduction method I The optimal selection of basis functions Math. Comp., 37, 31-46. Zbl0495.65049MR616358

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.