Numerical solution of second-order elliptic equations on plane domains
- Volume: 25, Issue: 2, page 169-191
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAngermann, Lutz. "Numerical solution of second-order elliptic equations on plane domains." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.2 (1991): 169-191. <http://eudml.org/doc/193624>.
@article{Angermann1991,
author = {Angermann, Lutz},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {linear convective diffusion equations; discrete conservation law; discrete maximum principle; finite element},
language = {eng},
number = {2},
pages = {169-191},
publisher = {Dunod},
title = {Numerical solution of second-order elliptic equations on plane domains},
url = {http://eudml.org/doc/193624},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Angermann, Lutz
TI - Numerical solution of second-order elliptic equations on plane domains
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 2
SP - 169
EP - 191
LA - eng
KW - linear convective diffusion equations; discrete conservation law; discrete maximum principle; finite element
UR - http://eudml.org/doc/193624
ER -
References
top- [1] L. ANGERMANN, A mass-lumping semidiscretization of the semiconductor device equations. Part II : Error analysis. COMPEL 8 (1989), no. 2, 84-105. Zbl0687.65113MR1020119
- [2] K. BABA, M. TABATA, On a conservative upwind finite element scheme for convective diffusion equations. R.A.I.R.O. Analyse numérique 15 (1981), no. 1, 3-25. Zbl0466.76090MR610595
- [3] R. E. BANK, D. J. ROSE, Some error estimates for the box method. SIAM J. Num. Anal. 24 (1987), no. 4, 777-787. Zbl0634.65105MR899703
- [4] P. CIARLET, The finite element method for elliptic problems. North-Holland Publishing Company, Amsterdam, New York - Oxford 1978. Zbl0383.65058MR520174
- [5] W. HACKBUSCH, On first and second order box schemes. Computing 41 (1989), 277-296. Zbl0649.65052MR993825
- [6] B. HEINRICH, Finite difference methods on irregular networks. Mathematical Reseach, vol. 33 Akademie-Verlag, Berlin 1987. Zbl0606.65065MR1015930
- [7] B. HEINRICH, Coercive and inverse-isotone discretization of diffusion-convection problems. AdW der DDR, Karl-Weierstrass-Institut fur Mathematik, PREPRINT P-MATH-19/88, Berlin 1988.
- [8] T. IKEDA, Maximum pnnciple in finite element models for convection-diffusion phenomena. North-Holland Publishing Company, Amsterdam - New York -Oxford/Kmokumya Comp. Ltd., Tokyo 1983. Zbl0508.65049MR683102
- [9] B. J. MCCARTIN, J. R. CASPAR, R. E. LA BARRE, G. A. PETERSON, R. H. HOBBS, Steady state numerical analysis of single carrier two dimensional, semiconductor devices using the control area approximation. Proceedings of the NASECODE III conf, 185-190 Boole Press, Dublin 1983.
- [10] J. J. H. MILLER, On the discretization of the semiconductor device equations in the two-dimensional case. Institute for Numerical and Computational Analysis, Preprint no. 1, Dublin 1986. Zbl0663.65128
- [11] M. S. MOCK, On equations describing steady-state carrier distributions in a semiconductor device. Commun. Pure Appl. Math. 25 (1972), no. 6, 781-792. MR323233
- [12] M. S. MOCK, Analysis of a discretization algorithm for stationary continuity equations in semiconductor device models, I-III. COMPEL 2 (1983), 117-139, 3 (1984), 137-149, 3 (1984), 187-199 Zbl0619.65117MR782025
- [13] U. RISCH, Die hybride upwind-FEM - ein einfaches Verfahren zur Behandlung konvektionsdominanter Randwertprobleme. Wiss Zeitschr. der TU Magdeburg 31 (1987), H 5, 88-94. Zbl0645.76095MR951107
- [14] H.-G. ROOS, Beziehungen zwischen Diskretisierungsverfahren fur Konvektions-Diffusions-Gleichungen und für die Grundgleichungen der inneren Elektronik. Informationen 07-10-86 der Technischen Universität, Dresden 1986.
Citations in EuDML Documents
top- L. Angermann, Addendum to the paper “Numerical solution of second-order equations on plane domains”
- Pascal Omnes, On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes
- Pascal Omnes, On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.