On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes

Pascal Omnes

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2011)

  • Volume: 45, Issue: 4, page 627-650
  • ISSN: 0764-583X

Abstract

top
Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on a triangular mesh and on the Voronoi diagram associated to its vertices. A broken P1 function is constructed from the solutions of both schemes. When the domain is two-dimensional polygonal convex, it is shown that this reconstruction converges with second-order accuracy towards the exact solution in the L2 norm, under the sufficient condition that the right-hand side of the Laplace equation belongs to H1(Ω).

How to cite

top

Omnes, Pascal. "On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.4 (2011): 627-650. <http://eudml.org/doc/273094>.

@article{Omnes2011,
abstract = {Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on a triangular mesh and on the Voronoi diagram associated to its vertices. A broken P1 function is constructed from the solutions of both schemes. When the domain is two-dimensional polygonal convex, it is shown that this reconstruction converges with second-order accuracy towards the exact solution in the L2 norm, under the sufficient condition that the right-hand side of the Laplace equation belongs to H1(Ω).},
author = {Omnes, Pascal},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite volume method; Laplace equation; Delaunay meshes; Voronoi meshes; convergence; error estimates},
language = {eng},
number = {4},
pages = {627-650},
publisher = {EDP-Sciences},
title = {On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes},
url = {http://eudml.org/doc/273094},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Omnes, Pascal
TI - On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 4
SP - 627
EP - 650
AB - Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on a triangular mesh and on the Voronoi diagram associated to its vertices. A broken P1 function is constructed from the solutions of both schemes. When the domain is two-dimensional polygonal convex, it is shown that this reconstruction converges with second-order accuracy towards the exact solution in the L2 norm, under the sufficient condition that the right-hand side of the Laplace equation belongs to H1(Ω).
LA - eng
KW - finite volume method; Laplace equation; Delaunay meshes; Voronoi meshes; convergence; error estimates
UR - http://eudml.org/doc/273094
ER -

References

top
  1. [1] I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 1700–1716. Zbl0951.65080MR1618761
  2. [2] I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results. SIAM J. Sci. Comput. 19 (1998) 1717–1736. Zbl0951.65082MR1611742
  3. [3] B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ.23 (2007) 145–195. Zbl1111.65101MR2275464
  4. [4] L. Angermann, Numerical solution of second-order elliptic equations on plane domains. RAIRO Modél. Math. Anal. Numér.25 (1991) 169–191. Zbl0717.65082MR1097143
  5. [5] R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal.24 (1987) 777–787. Zbl0634.65105MR899703
  6. [6] E. Bertolazzi and G. Manzini, On vertex reconstructions for cell-centered finite volume approximations of 2D anisotropic diffusion problems. Math. Models Methods Appl. Sci.17 (2007) 1–32. Zbl1119.65115MR2290407
  7. [7] S. Boivin, F. Cayré and J.-M. Hérard, A Finite Volume method to solve the Navier Stokes equations for incompressible flows on unstructured meshes. Int. J. Thermal Sciences39 (2000) 806–825. 
  8. [8] F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal.46 (2008) 3032–3070. Zbl1180.35533MR2439501
  9. [9] J. Breil and P.-H. Maire, A cell-centered diffusion scheme on two-dimensional unstructured meshes. J. Comput. Phys.224 (2007) 785–823. Zbl1120.65327MR2330295
  10. [10] Z. Cai, On the finite volume element method. Numer. Math.58 (1991) 713–735. Zbl0731.65093MR1090257
  11. [11] Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal.28 (1991) 392–402. Zbl0729.65086MR1087511
  12. [12] C. Carstensen, R. Lazarov and S. Tomov, Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal.42 (2005) 2496–2521. Zbl1084.65112MR2139403
  13. [13] C. Chainais-Hillairet, Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models. Internat. J. Numer. Methods Fluids59 (2009) 239–257. Zbl1154.82034MR2484267
  14. [14] S.H. Chou, D.Y. Kwak and Q. Li, Lp error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equ.19 (2003) 463–486. Zbl1029.65123MR1980190
  15. [15] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. Zbl0937.65116MR1713235
  16. [16] Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation. International Journal on Finite Volumes 6 (2009). MR2500950
  17. [17] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge7 (1973) 33–75. Zbl0302.65087MR343661
  18. [18] S. Delcourte, K. Domelevo and P. Omnes, A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes. SIAM J. Numer. Anal.45 (2007) 1142–1174. Zbl1152.65110MR2318807
  19. [19] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. Zbl1086.65108MR2195910
  20. [20] R. Ewing, R. Lazarov and Y. Lin, Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Methods Partial Differ. Equ.16 (2000) 285–311. Zbl0961.76050MR1752414
  21. [21] R.E. Ewing, T. Lin and Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal.39 (2002) 1865–1888. Zbl1036.65084MR1897941
  22. [22] R. Eymard, T. Gallouët and R. Herbin, Handbook of numerical analysis 7, P.G. Ciarlet and J.-L. Lions Eds., North-Holland/Elsevier, Amsterdam (2000) 713–1020. Zbl0981.65095MR1804748
  23. [23] P.A. Forsyth and P.H. Sammon, Quadratic convergence for cell-centered grids. Appl. Numer. Math.4 (1988) 377–394. Zbl0651.65086MR948505
  24. [24] W. Hackbucsh, On first and second order box schemes. Computing41 (1989) 277–296. Zbl0649.65052
  25. [25] R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods Partial Differ. Equ.11 (1995) 165–173. Zbl0822.65085MR1316144
  26. [26] F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys.160 (2000) 481–499. Zbl0949.65101MR1763823
  27. [27] F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng.192 (2003) 1939–1959. Zbl1037.65118MR1980752
  28. [28] R.D. Lazarov, I.D. Mishev and P.S. Vassilevski, Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal.33 (1996) 31–55. Zbl0847.65075MR1377242
  29. [29] C. Le Potier, Finite volume scheme for highly anisotropic diffusion operators on unstructured meshes. C. R. Math. Acad. Sci. Paris340 (2005) 921–926. Zbl1076.76049MR2152280
  30. [30] C. Le Potier, Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes. C. R. Math. Acad. Sci. Paris341 (2005) 787–792. Zbl1081.65086MR2188878
  31. [31] C. Le Potier, A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. International Journal on Finite Volumes 6 (2009). MR2519614
  32. [32] I.D. Mishev, Finite volume methods on Voronoi meshes. Numer. Methods Partial Differ. Equ.14 (1998) 193–212. Zbl0903.65083MR1605410
  33. [33] A. Njifenjou and A.J. Kinfack, Convergence analysis of an MPFA method for flow problems in anisotropic heterogeneous porous media. International Journal on Finite Volumes 5 (2008). MR2415169
  34. [34] P. Omnes, Error estimates for a finite volume method for the Laplace equation in dimension one through discrete Green functions. International Journal on Finite Volumes 6 (2009). MR2500951
  35. [35] E. Süli, Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal.28 (1991) 1419–1430. Zbl0802.65104MR1119276
  36. [36] R. Vanselow and H.P. Scheffler, Convergence analysis of a finite volume method via a new nonconforming finite element method. Numer. Methods Partial Differ. Equ.14 (1998) 213–231. Zbl0903.65084MR1605414
  37. [37] A. Weiser and M.F. Wheeler, On convergence of block centered finite differences for elliptic problems. SIAM J. Numer. Anal.25 (1988) 351–375. Zbl0644.65062MR933730

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.