Finite element approximation of a free boundary problem arising in the theory of liquid drops ans plasma physics

John W. Barrett; Charles M. Elliott

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 2, page 213-252
  • ISSN: 0764-583X

How to cite

top

Barrett, John W., and Elliott, Charles M.. "Finite element approximation of a free boundary problem arising in the theory of liquid drops ans plasma physics." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.2 (1991): 213-252. <http://eudml.org/doc/193626>.

@article{Barrett1991,
author = {Barrett, John W., Elliott, Charles M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Optimal order error bounds; finite element approximation; variational problem; plasma physics},
language = {eng},
number = {2},
pages = {213-252},
publisher = {Dunod},
title = {Finite element approximation of a free boundary problem arising in the theory of liquid drops ans plasma physics},
url = {http://eudml.org/doc/193626},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Barrett, John W.
AU - Elliott, Charles M.
TI - Finite element approximation of a free boundary problem arising in the theory of liquid drops ans plasma physics
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 2
SP - 213
EP - 252
LA - eng
KW - Optimal order error bounds; finite element approximation; variational problem; plasma physics
UR - http://eudml.org/doc/193626
ER -

References

top
  1. C. BAIOCCHI [ 1977] Estimations d'erreur dans L∞ pour les inéquations à obstacle In Mathematical Aspects of Finite Element Methods, Rome, 1975 Springer Lecture Notes Math 606, pp 27-34 Zbl0374.65053MR488847
  2. J. W. BARRETT and C. M. ELLIOTT [ 1989a] Finite element approximation of a plasma equilibrum problem IMA J Numer Anal 9, 443-464 Zbl0681.76114MR1030641
  3. J. W. BARRETT and C. M. ELLIOTT [ 1989b] Remarks concerning a free boundary problem arising in the theory of liquid drops and plasma physics Proc Roy Soc Edin A 111, 169-181 Zbl0668.76137MR985997
  4. T. B. BENJAMIN and A. COCKER [ 1984] Liquid drops suspended by soap filmsPart II Proc. Roy. Soc. Lond. A 394, 33-45 Zbl0573.76091MR763503
  5. H. BERESTYCKI and H. BREZIS [ 1980] On a free boundary problem arising in plasma physics Nonlinear Analysis 4, 415-436 Zbl0437.35032MR574364
  6. G. CALOZ [ 1984] A free boundary problem related to axisymmetric MHD equilibria existence and numerical approximation of solutions Report of Dept Mathematics, Lausanne 
  7. G. CALOZ[ 1987] : Simulation numérique des équilibres d'un plasma dans un tokomak : modélisation et études mathématiques. Thesis 650 of Dept. Mathematics, EPF-Lausanne. 
  8. G. CALOZ [ 1988] : Approximation by finite element method of the model plasma problem. Dept. of Mathematics, University of Maryland. Zbl0712.76069
  9. R. CHAKRABARTI [ 1988] : Numerical solution of some free boundary problems. Ph. D. Thesis, Imperial College. 
  10. P. G. CIARLET [ 1988] : Introduction to Numerical Linear Algebra and Optimisation. C.U.P., Cambridge. Zbl0672.65001MR1015713
  11. P. G. CIARLET and P. RAVIART [ 1973] : Maximum principle and uniform convergence for the finite element method. Comp. Meth. Appl. Mech. Eng. 2, 17-31. Zbl0251.65069MR375802
  12. A. COCKER, A. FRIEDMAN and J. B. MCLEOD [ 1986] : A variational inequality associated with liquid on a soap film. Arch. Rat. Mech. Anal. 93, 15-45. MR822334
  13. P. CORTEY-DUMONT [ 1985b] : Sur les inéquations variationnelles à opérateur non coercif. M2AN.-R.A.I.R.O., 19, 195-212. MR802593
  14. P. CORTEY-DUMONT [ 1985b] : On finite element approximation in the L∞-norm of variational inequalities. Numer. Math., 47, 45-57. Zbl0574.65064MR797877
  15. M. CROUZEIX and J. RAPPAZ [ 1987] : On numerical approximation in bifurcation theory. Report of the Department of Mathematics, EPF-Lausanne. Zbl0687.65057
  16. N. DYN and W. E. FERGUSON [ 1983] : The numerical solution of equality-constrained quadratic programming problems. Math. Comp., 163, 165-170. Zbl0527.49030MR701631
  17. R. FALK [ 1974] : Error estimates for the approximation of a class of variational inequalities.Math. Comp. 28, 963-971. Zbl0297.65061MR391502
  18. A. FRIEDMAN [ 1982] : Variational Principles and Free Boundary Problems. J. Wiley, New York. Zbl0564.49002MR679313
  19. V. GIRAULT and P. A. RAVIART [ 1982] : An analysis of upwind schemes for the Navier-Stokes equations SIAM. J. Numer. Anal. 19, 312-333. Zbl0487.76036MR650053
  20. P. GRISVARD [ 1985] : Elliptic Problems in Nonsmooth Domains, Pilman, Boston. Zbl0695.35060MR775683
  21. F. KlKUCHl, K. NAKAZOTA and T. USHIJIMA [ 1984] : Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria. Japan J. Appl. Math. 1, 369-403. Zbl0634.76117MR840803
  22. D. KINDERLEHRER and J. SPRUCK [ 1978] : Regularity in free boundary problems. Ann. Scuola N. Sup. Pissa 5, 131-148. Zbl0409.76095MR481511
  23. D. KINDERLEHRER and G. STAMPACCHIA [ 1980] : An Introduction to Variational Inequalities and Their Applications. Academic Press, New York. Zbl0457.35001MR567696
  24. J. A. NITSCHE [ 1977]: L∞-convergence of finite element approximations. In: Mathematical Aspects of Finite Element Methods, Rome. 1975. Springer Lectures Notes Math., 606,pp. 1-15. Zbl0362.65088MR488848
  25. J. RAPPAZ [ 1984] : Approximation of a nondifferentiable nonlinear problem related to MHD equuibria. Numer. Math. 45, 117-133. Zbl0527.65073MR761884
  26. J. F. RODRIGUES [ 1987] : Obstacle Problems in Mathematical Physics, North Holland, Amsterdam. Zbl0606.73017MR880369
  27. A. SCHATZ[ 1985] : An introduction to the analysis of the error in the finite element method for second-order elliptic boundary value problems. In : Numerical Analysis Lancaster 1984. Springer Lecture Notes, Math., 1129, pp. 94-139. Zbl0577.65096MR799031
  28. M. SERMANGE [ 1979] : Une méthode numérique en bifurcation - une application à un problème à frontière libre de la physique des plasmas. Appl. Math. Optim. 5, 127-151. Zbl0393.65026MR533616
  29. G. STRANG and G. FIX [ 1973] : An Analysis of the Finite Element Method Prentice-Hall, New Jersey. Zbl0356.65096MR443377
  30. R. TEMAM [ 1975] : A nonlinear eigenvalue problem : equilibrium shape of a confined plasma. Arch. Rat. Mech. Anal. 60, 51-73. Zbl0328.35069MR412637
  31. R. TEMAM [ 1977] : Remarks on a free boundary problem arising in plasma physics. Comm. in P.D.E. 2, 563-585. Zbl0355.35023MR602544
  32. V. THOMEE [ 1984] : Galerkin Finite Element Methods for Parabolic Problems. Lect.Notes Math. (Springer) # 1054. Zbl0528.65052MR744045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.