The h - p version of the boundary element method on polygonal domains with quasiuniform meshes

E. P. Stephan; M. Suri

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 6, page 783-807
  • ISSN: 0764-583X

How to cite

top

Stephan, E. P., and Suri, M.. "The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.6 (1991): 783-807. <http://eudml.org/doc/193648>.

@article{Stephan1991,
author = {Stephan, E. P., Suri, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {- version; boundary element method; polygonal domains; quasiuniform meshes; error estimates; rate of convergence},
language = {eng},
number = {6},
pages = {783-807},
publisher = {Dunod},
title = {The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes},
url = {http://eudml.org/doc/193648},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Stephan, E. P.
AU - Suri, M.
TI - The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 6
SP - 783
EP - 807
LA - eng
KW - - version; boundary element method; polygonal domains; quasiuniform meshes; error estimates; rate of convergence
UR - http://eudml.org/doc/193648
ER -

References

top
  1. [1] E. ALARCON, L. ABIA, A. REVERTER, On the possibility of adaptive boundary elements, in : Accuracy Estimates and Adaptive Refinements in Finite Element Computations (AFREC), Lisbon, 1984. 
  2. [2] E. ALARCON, A. REVERTER, J. MOLINA, Hierarchical boundary elements. Comput. and Structures, 20 (1985) 151-156. Zbl0581.73095
  3. [3] E. ALARCON, A. REVERTER, p-adaptive boundary elements. Internat. J.Numer. Methods Engrg. 23 (1986) 801-829. Zbl0593.65068
  4. [4] I. BABUŠKA, M. SURI, The p and h-p versions of the finite element method, An Overview. Computer Methods in Applied Mechanics and Engineering 80 (1990) 5-26. Zbl0731.73078MR1067939
  5. [5] I. BABUŠKA, A. K. AZIZ, Survey lectures on the mathematical foundations of the finite element method, in : The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (ed. by A. K. Aziz), Academic Press, New York (1972) 3-359. Zbl0268.65052MR421106
  6. [6] I. BABUŠKA, M. DORR, Error estimates for the combined h and p version of the finite element method. Numer. Math. 37 (1981) 257-277. Zbl0487.65058MR623044
  7. [7] I. BABUŠKA, B. GUO, M. SURI, Implementation of non-homogeneous Dirichleboundary conditions in the p-version of the finite element method. Impact of Computing in Science and Engineering 1 (1989) 36-63. Zbl0709.65079
  8. [8] I. BABUŠKA, B. A. SZABO, I. N. KATZ, The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981) 515-545. Zbl0487.65059MR615529
  9. [9] I. BABUŠKA, M. SURI, The treatment of nonhomogeneous Dirichlet boundar conditions by the p-version of the finite element method, Num. Math. 55 (1989) 97-121. Zbl0673.65066MR987158
  10. [10] I. BABUŠKA, M. SURI, The h-p version of the finite element method with quasi uniform meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987) 199-238. Zbl0623.65113MR896241
  11. [11] P. G. ClARLET, The finite element method for elliptic problems. North Holland Publishing Co, Amsterdam, 1987. Zbl0383.65058
  12. [12] M. COSTABEL, E. P. STEPHAN, The normal derivative of the double layer potential on polygons and Galerkin approximation. Appl. Anal. 16 (1983) 205-228. Zbl0508.31003MR712733
  13. [13] M. COSTABEL, E. P. STEPHAN, The method of Mellin transformation for boundary integral equations on curves with corners, Numerical Solutions of Singular Intégral Equations (ed. A. Gerasoulis, R. Vichnevetsky) IMACS (1984) 95-102. 
  14. [14] M. COSTABEL, E. P. STEPHAN, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximations, in : Mathematical Models and Methods in Mechanics(1981), W. Fiszdon and K. Wilmânski, editors, Banach Center Publications, Vol. 5, 15, pp. 175-251, PWN-Polish Scientific Publishers, Warsaw (1985). Zbl0655.65129MR874845
  15. [15] M. R. DORR, The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal. 21 (1984) 1180-1207. Zbl0572.65074MR765514
  16. [16] W. GUI, I. BABUŠKA, he h-p versions of the finite element method in one dimension. Parts 1-3, Numer. Math. 49 (1986) 577-683. MR861522
  17. [17] S. HILDEBRANDT, E. WlENHOLTZ, Constructive proofs of representation theorems in separable Hilbert space, Comm. Pure Appl. Math. 17 (1964) 369-373. Zbl0131.13401MR166608
  18. [18] J. L. LIONS, E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications I, Springer-Verlag, Berlin, Heidelberg, New York, 1972. Zbl0223.35039
  19. [19] T. VON PETERSDORFF, Boundary value problems of elasticity in polyhedra-Singularities and approximation by boundary elements, Ph. D. Thesis, TH Darmstadt (1989). 
  20. [20] E. RANK, Adaptive Boundary Element Methods, in : Boundary Elements 9, Vol. 1 (ed C A. Brebbia, W. L. Wendland, G. Kuhn), Springer-Verlag, Heidelberg (1987) 259-273. MR965323
  21. [21] E. P. STEPHAN, M. SURI, On the convergence of the p-version of the boundary element Galerkin method, Math. Comp. 52 (1989) 31-48. Zbl0661.65118MR947469
  22. [22] E. P. STEPHAN, W. L. WENDLAND, Remarks to Galerkin and least squaresmethods with finite elements for general elliptic problem. Manuscripta Geodaetica 1 (1976) 93-123. Zbl0353.65067
  23. [23] E. P. STEPHAN, W. L. WENDLAND, An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems. Appl. Anal. 18 (1984) 183-219. Zbl0522.73083MR767500
  24. [24] E. P. STEPHAN, W. L. WENDLAND, A hypersingular boundary integral method for two-dimensional screen and crack problem, Arch. Rational Mech. Anal. 112 (1990) 363-390. Zbl0725.73091MR1077265
  25. [25] H. TRIEBEL, Interpolation Theory, Function Space, Differential Operators. North-Holland Publishing Co., Amsterdam, 1987. Zbl0387.46032MR503903
  26. [26] W. L. WENDLAND, On some mathematical aspects of boundary element methods for elliptic problems, in : J. Whiteman, editor, Mathematics of Finite Elements and Applications V, pp. 193-227, Academic press, London, 1985. Zbl0587.65079MR811035
  27. [27] W. L. WENDLAND, Splines versus trigonometrie polynomials, h-versus p-version in 2D boundary integral methods. In D. Griffïths, R. Mitchell eds., Dundee Biennial Conference on Numerical Analysis, 1985. 25, n° 6, 1991. Zbl0653.65082

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.