# The hp-version of the boundary element method with quasi-uniform meshes in three dimensions

Alexei Bespalov; Norbert Heuer

ESAIM: Mathematical Modelling and Numerical Analysis (2008)

- Volume: 42, Issue: 5, page 821-849
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topBespalov, Alexei, and Heuer, Norbert. "The hp-version of the boundary element method with quasi-uniform meshes in three dimensions." ESAIM: Mathematical Modelling and Numerical Analysis 42.5 (2008): 821-849. <http://eudml.org/doc/250357>.

@article{Bespalov2008,

abstract = {
We prove an a priori error estimate for the hp-version of the boundary
element method with hypersingular operators on piecewise plane open or
closed surfaces. The underlying meshes are supposed to be quasi-uniform.
The solutions of problems on polyhedral or piecewise plane open surfaces exhibit
typical singularities which limit the convergence rate of the boundary element method.
On closed surfaces, and for sufficiently smooth given data, the solution is
H1-regular whereas, on open surfaces, edge singularities are
strong enough to prevent the solution from being in H1.
In this paper we cover both cases and, in particular, prove an a priori
error estimate for the h-version with quasi-uniform meshes.
For open surfaces we prove a convergence like O(h1/2p-1),
h being the mesh size and p denoting the polynomial degree.
This result had been conjectured previously.
},

author = {Bespalov, Alexei, Heuer, Norbert},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {hp-version with quasi-uniform meshes; boundary element method; singularities.; -version with quasi-uniform meshes; singularities},

language = {eng},

month = {7},

number = {5},

pages = {821-849},

publisher = {EDP Sciences},

title = {The hp-version of the boundary element method with quasi-uniform meshes in three dimensions},

url = {http://eudml.org/doc/250357},

volume = {42},

year = {2008},

}

TY - JOUR

AU - Bespalov, Alexei

AU - Heuer, Norbert

TI - The hp-version of the boundary element method with quasi-uniform meshes in three dimensions

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2008/7//

PB - EDP Sciences

VL - 42

IS - 5

SP - 821

EP - 849

AB -
We prove an a priori error estimate for the hp-version of the boundary
element method with hypersingular operators on piecewise plane open or
closed surfaces. The underlying meshes are supposed to be quasi-uniform.
The solutions of problems on polyhedral or piecewise plane open surfaces exhibit
typical singularities which limit the convergence rate of the boundary element method.
On closed surfaces, and for sufficiently smooth given data, the solution is
H1-regular whereas, on open surfaces, edge singularities are
strong enough to prevent the solution from being in H1.
In this paper we cover both cases and, in particular, prove an a priori
error estimate for the h-version with quasi-uniform meshes.
For open surfaces we prove a convergence like O(h1/2p-1),
h being the mesh size and p denoting the polynomial degree.
This result had been conjectured previously.

LA - eng

KW - hp-version with quasi-uniform meshes; boundary element method; singularities.; -version with quasi-uniform meshes; singularities

UR - http://eudml.org/doc/250357

ER -

## References

top- M. Ainsworth and L. Demkowicz, Explicit polynomial preserving trace liftings on a triangle. Math. Nachr. (to appear). Zbl1175.46019
- M. Ainsworth and D. Kay, The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs. Numer. Math.82 (1999) 351–388. Zbl0938.65122
- M. Ainsworth and K. Pinchedez, The hp-MITC finite element method for the Reissner-Mindlin plate problem. J. Comput. Appl. Math.148 (2002) 429–462. Zbl1058.74076
- M. Ainsworth, W. McLean and T. Tran, The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal.36 (1999) 1901–1932. Zbl0947.65125
- I. Babuška and B.Q. Guo, Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions. Numer. Math.85 (2000) 219–255. Zbl0970.65117
- I. Babuška and M. Suri, The h-p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér.21 (1987) 199–238. Zbl0623.65113
- I. Babuška and M. Suri, The optimal convergence rate of the p-version of the finite element method. SIAM J. Numer. Anal.24 (1987) 750–776. Zbl0637.65103
- I. Babuška and M. Suri, The treatment of nonhomogeneous Dirichlet boundary conditions by the p-version of the finite element method. Numer. Math.55 (1989) 97–121. Zbl0673.65066
- I. Babuška, R.B. Kellogg and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinement. Numer. Math.33 (1979) 447–471. Zbl0423.65057
- J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren der mathematischen Wissenschaften223. Springer-Verlag, Berlin (1976). Zbl0344.46071
- A. Bespalov and N. Heuer, The p-version of the boundary element method for hypersingular operators on piecewise plane open surfaces. Numer. Math.100 (2005) 185–209. Zbl1082.65129
- A. Bespalov and N. Heuer, The p-version of the boundary element method for weakly singular operators on piecewise plane open surfaces. Numer. Math.106 (2007) 69–97. Zbl1117.65160
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Zbl0383.65058
- M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal.19 (1988) 613–626. Zbl0644.35037
- L. Demkowicz, Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations, in Mixed Finite Elements, Compatibility Conditions and Applications, D. Boffi and L. Gastaldi Eds., Lecture Notes in Mathematics1939, Springer-Verlag (2008).
- L. Demkowicz and I. Babuška, p interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal.41 (2003) 1195–1208. Zbl1067.78016
- V.J. Ervin and N. Heuer, An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J. Numer. Anal.26 (2006) 297–325. Zbl1096.65120
- P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Publishing Inc., Boston (1985). Zbl0695.35060
- B.Q. Guo, Approximation theory for the p-version of the finite element method in three dimensions. Part 1: Approximabilities of singular functions in the framework of the Jacobi-weighted Besov and Sobolev spaces. SIAM J. Numer. Anal.44 (2006) 246–269. Zbl1115.65117
- B.Q. Guo and N. Heuer, The optimal rate of convergence of the p-version of the boundary element method in two dimensions. Numer. Math.98 (2004) 499–538. Zbl1060.65117
- B.Q. Guo and N. Heuer, The optimal convergence of the h-p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains. Adv. Comp. Math.24 (2006) 353–374. Zbl1103.65109
- N. Heuer and F. Leydecker, An extension theorem for polynomials on triangles. Calcolo45 (2008) 69–85. Zbl1175.65143
- N. Heuer, M. Maischak and E.P. Stephan, Exponential convergence of the hp-version for the boundary element method on open surfaces. Numer. Math.83 (1999) 641–666. Zbl0946.65120
- J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York (1972). Zbl0223.35039
- P. Monk, On the p- and hp-extension of Nédélec's curl-conforming elements. J. Comput. Appl. Math.53 (1994) 117–137. Zbl0820.65066
- J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967).
- C. Schwab, p- and hp-Finite Element Methods. Clarendon Press, Oxford (1998). Zbl0910.73003
- C. Schwab and M. Suri, The optimal p-version approximation of singularities on polyhedra in the boundary element method. SIAM J. Numer. Anal.33 (1996) 729–759. Zbl0854.65108
- E.P. Stephan, Boundary integral equations for screen problems in ${\mathbb{R}}^{3}$. Integr. Equ. Oper. Theory10 (1987) 257–263. Zbl0653.35016
- E.P. Stephan, The h-p boundary element method for solving 2- and 3-dimensional problems. Comput. Methods Appl. Mech. Engrg.133 (1996) 183–208. Zbl0918.73290
- E.P. Stephan and M. Suri, The h-p version of the boundary element method on polygonal domains with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér.25 (1991) 783–807. Zbl0744.65073
- T. von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder – Singularitäten und Approximation mit Randelementmethoden. Ph.D. thesis, Technische Hochschule Darmstadt, Germany (1989). Zbl0709.73009
- T. von Petersdorff and E.P. Stephan, Regularity of mixed boundary value problems in ${\mathbb{R}}^{3}$ and boundary element methods on graded meshes. Math. Methods Appl. Sci.12 (1990) 229–249. Zbl0722.35017

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.