The hp-version of the boundary element method with quasi-uniform meshes in three dimensions
Alexei Bespalov; Norbert Heuer
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 5, page 821-849
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Ainsworth and L. Demkowicz, Explicit polynomial preserving trace liftings on a triangle. Math. Nachr. (to appear).
- M. Ainsworth and D. Kay, The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs. Numer. Math.82 (1999) 351–388.
- M. Ainsworth and K. Pinchedez, The hp-MITC finite element method for the Reissner-Mindlin plate problem. J. Comput. Appl. Math.148 (2002) 429–462.
- M. Ainsworth, W. McLean and T. Tran, The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal.36 (1999) 1901–1932.
- I. Babuška and B.Q. Guo, Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions. Numer. Math.85 (2000) 219–255.
- I. Babuška and M. Suri, The h-p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér.21 (1987) 199–238.
- I. Babuška and M. Suri, The optimal convergence rate of the p-version of the finite element method. SIAM J. Numer. Anal.24 (1987) 750–776.
- I. Babuška and M. Suri, The treatment of nonhomogeneous Dirichlet boundary conditions by the p-version of the finite element method. Numer. Math.55 (1989) 97–121.
- I. Babuška, R.B. Kellogg and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinement. Numer. Math.33 (1979) 447–471.
- J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren der mathematischen Wissenschaften223. Springer-Verlag, Berlin (1976).
- A. Bespalov and N. Heuer, The p-version of the boundary element method for hypersingular operators on piecewise plane open surfaces. Numer. Math.100 (2005) 185–209.
- A. Bespalov and N. Heuer, The p-version of the boundary element method for weakly singular operators on piecewise plane open surfaces. Numer. Math.106 (2007) 69–97.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
- M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal.19 (1988) 613–626.
- L. Demkowicz, Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations, in Mixed Finite Elements, Compatibility Conditions and Applications, D. Boffi and L. Gastaldi Eds., Lecture Notes in Mathematics1939, Springer-Verlag (2008).
- L. Demkowicz and I. Babuška, p interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal.41 (2003) 1195–1208.
- V.J. Ervin and N. Heuer, An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J. Numer. Anal.26 (2006) 297–325.
- P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Publishing Inc., Boston (1985).
- B.Q. Guo, Approximation theory for the p-version of the finite element method in three dimensions. Part 1: Approximabilities of singular functions in the framework of the Jacobi-weighted Besov and Sobolev spaces. SIAM J. Numer. Anal.44 (2006) 246–269.
- B.Q. Guo and N. Heuer, The optimal rate of convergence of the p-version of the boundary element method in two dimensions. Numer. Math.98 (2004) 499–538.
- B.Q. Guo and N. Heuer, The optimal convergence of the h-p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains. Adv. Comp. Math.24 (2006) 353–374.
- N. Heuer and F. Leydecker, An extension theorem for polynomials on triangles. Calcolo45 (2008) 69–85.
- N. Heuer, M. Maischak and E.P. Stephan, Exponential convergence of the hp-version for the boundary element method on open surfaces. Numer. Math.83 (1999) 641–666.
- J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York (1972).
- P. Monk, On the p- and hp-extension of Nédélec's curl-conforming elements. J. Comput. Appl. Math.53 (1994) 117–137.
- J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967).
- C. Schwab, p- and hp-Finite Element Methods. Clarendon Press, Oxford (1998).
- C. Schwab and M. Suri, The optimal p-version approximation of singularities on polyhedra in the boundary element method. SIAM J. Numer. Anal.33 (1996) 729–759.
- E.P. Stephan, Boundary integral equations for screen problems in . Integr. Equ. Oper. Theory10 (1987) 257–263.
- E.P. Stephan, The h-p boundary element method for solving 2- and 3-dimensional problems. Comput. Methods Appl. Mech. Engrg.133 (1996) 183–208.
- E.P. Stephan and M. Suri, The h-p version of the boundary element method on polygonal domains with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér.25 (1991) 783–807.
- T. von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder – Singularitäten und Approximation mit Randelementmethoden. Ph.D. thesis, Technische Hochschule Darmstadt, Germany (1989).
- T. von Petersdorff and E.P. Stephan, Regularity of mixed boundary value problems in and boundary element methods on graded meshes. Math. Methods Appl. Sci.12 (1990) 229–249.