Analysis of mixed methods using conforming and nonconforming finite element methods
- Volume: 27, Issue: 1, page 9-34
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] T. ARBOGAST, A new formulation of mixed finite element methods for second order elliptic problems (to appear). Zbl1248.65119
- [2] D. N. ARNOLD and F. BREZZI, Mixed and nonconforming finite element methods : implementation postprocessing and error estimates, RAIRO Model. Math. Anal Numér., 19 (1985), pp 7-32. Zbl0567.65078MR813687
- [3] F. BREZZI, J. DOUGLAS Jr and L. DONATELLA MARINI, Two families of mixed finite elements for second order elliptic problems, Numer Math., 47 (1985), pp 217-235. Zbl0599.65072MR799685
- [4] Z. CHEN, On the relationship between mixed and Galerkin finite element methods, Ph. D. thesis, Purdue University, West Lafayette, Indiana, August (1991).
- [5] F. BREZZI and M. FORTIN, Hybrid and Mixed Finite Element Methods, to appear. Zbl0788.73002
- [6] P. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
- [7] J. DOUGLAS Jr and J. E. ROBERTS, Global estimates for mixed methods for second order elliptic problems, Math. Comp., 45 (1985), pp 39-52. Zbl0624.65109MR771029
- [8] R. FALK and J. OSBORN, Error estimates for mixed methods, RAIRO, Model. Math. Anal. Numér., 14 (1980), pp 249-277. Zbl0467.65062MR592753
- [9] M. FORTIN and M. SOULIE, A non-conforming piecewise quadratic finite element on triangles, Internat. J. Numer. Methods Engrg., 19 (1983), pp 505-520. Zbl0514.73068MR702056
- [10] B. X. FRAEIJS DE VEUBEKE, Displacement and equilibrium models in the finite element method, in Stress Analysis, O. C. Zienkiewicz and G. Hohste (eds.), John Wiley, New York, 1965. Zbl0359.73007
- [11] L. DONATELLA MARINI, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal., 22 (1985), pp 493-496. Zbl0573.65082MR787572
- [12] L. DONATELLA MARINI and P. PIETRA, An abstract theory for mixed approximations of second order elliptic problems, Mat. Apl. Comput., 8 (1989), pp 219-239. Zbl0711.65091MR1067287
- [13] P. A. RAVIART and J. M. THOMAS, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. 606, Springer-Verlag, Berlin and New York (1977), pp 292-315. Zbl0362.65089MR483555