### A boundary element method for Signorini problems in three dimensions.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

A coupled finite/boundary element method to approximate the free vibration modes of an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of one of the most usual procedures in engineering practice: an added mass formulation, which is posed in terms of boundary integral equations. Piecewise linear continuous elements are used to discretize the solid displacements and the fluid-solid interface variables. Spectral...

A coupled finite/boundary element method to approximate the free vibration modes of an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of one of the most usual procedures in engineering practice: an added mass formulation, which is posed in terms of boundary integral equations. Piecewise linear continuous elements are used to discretize the solid displacements and the fluid-solid interface variables....

We consider coupled structures consisting of two different linear elastic materials bonded along an interface. The material discontinuities combined with geometrical peculiarities of the outer boundary lead to unbounded stresses. The mathematical analysis of the singular behaviour of the elastic fields, especially near points where the interface meets the outer boundary, can be performed by means of asymptotic expansions with respect to the distance from the geometrical and structural singularities....

This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in ${\mathbb{R}}^{n}$ (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc:= ${\mathbb{R}}^{n}\setminus \overline{\Omega}$. The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping (NtD)...

This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in ${\mathbb{R}}^{n}$ (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc := ${\mathbb{R}}^{n}\setminus \overline{\Omega}$. The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping...

It is rather classical to model multiperforated plates by approximate impedance boundary conditions. In this article we would like to compare an instance of such boundary conditions obtained through a matched asymptotic expansions technique to direct numerical computations based on a boundary element formulation in the case of linear acoustic.

The aim of the paper is to give a method to solve boundary value problems associated to the Helmholtz equation and to the operator of elasticity. We transform these problems in problems on the boundary Gamma of an open set of R3. After introducing a symplectic form on H1,2(G) x H-1,2(G) we obtain the adjoint of the boundary operator employed. Then the boundary problem has a solution if and only if the boundary conditions are orthogonal, for this bilinear form, to the elements of the kernel, in a...