Separation of variables in the Stokes problem application to its finite element multiscale approximation

O. Goubet

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 3, page 243-266
  • ISSN: 0764-583X

How to cite

top

Goubet, O.. "Separation of variables in the Stokes problem application to its finite element multiscale approximation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.3 (1994): 243-266. <http://eudml.org/doc/193738>.

@article{Goubet1994,
author = {Goubet, O.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear Galerkin methods; optimization problems},
language = {eng},
number = {3},
pages = {243-266},
publisher = {Dunod},
title = {Separation of variables in the Stokes problem application to its finite element multiscale approximation},
url = {http://eudml.org/doc/193738},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Goubet, O.
TI - Separation of variables in the Stokes problem application to its finite element multiscale approximation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 3
SP - 243
EP - 266
LA - eng
KW - nonlinear Galerkin methods; optimization problems
UR - http://eudml.org/doc/193738
ER -

References

top
  1. [1] O. AXELSSON and I. GUSTAFSON, 1983, Preconditioning and two-level multigrid methods of arbitrary degree of approximation, Math. Comput., 40, 219-242. Zbl0511.65079MR679442
  2. [2] M. BERCOVIER and O. PIRONNEAU, 1979, Error estimates for finite element solutions of the Stokes problem in the primitive variables, Numer. Math., 33, 211-224. Zbl0423.65058MR549450
  3. [3] F. BREZZI and M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol.15, Springer-Verlag, New York. Zbl0788.73002MR1115205
  4. [4] J. H. BRAMBLE, J. E. PASCIAK and J. Xu, 1990, Parallel multilevel preconditioners, Math. Comput., 55,1-22. Zbl0703.65076MR1023042
  5. [5] M. CHEN and R. TEMAM, 1991, The incremental unknowns method, I, II, Applied Mathematics Letters. Zbl0726.65133MR1101880
  6. [6] P. CIARLET, 1977, The Finite Element Method for Elliptic Problems, North-Holland. Zbl0383.65058
  7. [7] A. DEBUSSCHE and M. MARION, On the construction of families of approximate inertial manifolds, J. Diff. Equ., to appear. Zbl0760.34050MR1187868
  8. [8] I. EKELAND and R. TEMAM, 1976, Convex Analysis and Variational Problems, North-Holland, Amsterdam. Zbl0322.90046MR463994
  9. [9] I. FLAHAUT, 1991, Approximate inertial manifolds for the sine-Gordon equation, J. Diff. and Integ. Equ., 4, 1169-1194. Zbl0748.35039MR1133751
  10. [10] C. FOIAS, O. MANLEY and R. TEMAM, 1988, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, Math, Model. Numer. Anal, 22, 93-114. Zbl0663.76054MR934703
  11. [11] C. FOIAS, . S SELL and R. TEMAM, 1988, Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73,309-353. Zbl0643.58004MR943945
  12. [12] V. GIRAULT and P. A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, New York. Zbl0585.65077MR851383
  13. [13] O. GOUBET, 1992, Construction of approximate inertial manifolds using wavelets, SIAM J. Math. Anal., 23,1455-1481. Zbl0770.35003MR1185638
  14. [14] O. GOUBET, 1992, Separation des variables dans le probleme de Stokes. Application à son approximation multiéchelles éléments finis, C. R. Acad. Sci.Paris, 315, Série I, 1315-1318. Zbl0763.76043MR1194543
  15. [15] P. GRISVARD, 1980, Boundary Value Problems in Non-smooth Domains, Univ.of Maryland, Départ, of Math., Lecture Notes n° 19. 
  16. [16] M. MARION and R. TEMAM, 1989, Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26, 1139-1157. Zbl0683.65083MR1014878
  17. [17] M. MARION and R. TEMAM, 1990, Nonlinear Galerkin methods, the finite elements case, Numer. Math., 57,1-22. Zbl0702.65081MR1057121
  18. [18] F. PASCAL, 1992, Thesis, Université de Paris-Sud. 
  19. [19] K. PROMISLOW and R. TEMAM, Localization and approximation of attractors for the Ginzburg-Landau equation, J. Dynamic and Diff. Equ., to appear. Zbl0751.34036MR1129558
  20. [20] R. TEMAM, 1988, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68. Zbl0662.35001MR953967
  21. [21] R. TEMAM, 1989, Attractors for the Navier-Stokes equations, localization and approximation, J. Fac. Sci. Tokyo, Sec. IA, 36, 629-647. Zbl0698.58040MR1039488
  22. [22] R. TEMAM, 1990, Inertial manifolds and multigrid methods, SIAM J. Math. Anal., 21, 154-178. Zbl0715.35039MR1032732
  23. [23] R. TEMAM, 1984, Navier-Stokes Equations, 3rd ed., North-Holland, Amsterdam. Zbl0568.35002MR769654
  24. [24] R. VERFÜRTH, 1984, Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Numer. Anal., 18, 175-182. Zbl0557.76037MR743884
  25. [25] H. YSERENTANT, 1986, On the multi-level spliting of finite element spaces, Numer. Math., 49, 379-412. Zbl0608.65065

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.