Separation of variables in the Stokes problem application to its finite element multiscale approximation
- Volume: 28, Issue: 3, page 243-266
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGoubet, O.. "Separation of variables in the Stokes problem application to its finite element multiscale approximation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.3 (1994): 243-266. <http://eudml.org/doc/193738>.
@article{Goubet1994,
author = {Goubet, O.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear Galerkin methods; optimization problems},
language = {eng},
number = {3},
pages = {243-266},
publisher = {Dunod},
title = {Separation of variables in the Stokes problem application to its finite element multiscale approximation},
url = {http://eudml.org/doc/193738},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Goubet, O.
TI - Separation of variables in the Stokes problem application to its finite element multiscale approximation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 3
SP - 243
EP - 266
LA - eng
KW - nonlinear Galerkin methods; optimization problems
UR - http://eudml.org/doc/193738
ER -
References
top- [1] O. AXELSSON and I. GUSTAFSON, 1983, Preconditioning and two-level multigrid methods of arbitrary degree of approximation, Math. Comput., 40, 219-242. Zbl0511.65079MR679442
- [2] M. BERCOVIER and O. PIRONNEAU, 1979, Error estimates for finite element solutions of the Stokes problem in the primitive variables, Numer. Math., 33, 211-224. Zbl0423.65058MR549450
- [3] F. BREZZI and M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol.15, Springer-Verlag, New York. Zbl0788.73002MR1115205
- [4] J. H. BRAMBLE, J. E. PASCIAK and J. Xu, 1990, Parallel multilevel preconditioners, Math. Comput., 55,1-22. Zbl0703.65076MR1023042
- [5] M. CHEN and R. TEMAM, 1991, The incremental unknowns method, I, II, Applied Mathematics Letters. Zbl0726.65133MR1101880
- [6] P. CIARLET, 1977, The Finite Element Method for Elliptic Problems, North-Holland. Zbl0383.65058
- [7] A. DEBUSSCHE and M. MARION, On the construction of families of approximate inertial manifolds, J. Diff. Equ., to appear. Zbl0760.34050MR1187868
- [8] I. EKELAND and R. TEMAM, 1976, Convex Analysis and Variational Problems, North-Holland, Amsterdam. Zbl0322.90046MR463994
- [9] I. FLAHAUT, 1991, Approximate inertial manifolds for the sine-Gordon equation, J. Diff. and Integ. Equ., 4, 1169-1194. Zbl0748.35039MR1133751
- [10] C. FOIAS, O. MANLEY and R. TEMAM, 1988, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, Math, Model. Numer. Anal, 22, 93-114. Zbl0663.76054MR934703
- [11] C. FOIAS, . S SELL and R. TEMAM, 1988, Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73,309-353. Zbl0643.58004MR943945
- [12] V. GIRAULT and P. A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, New York. Zbl0585.65077MR851383
- [13] O. GOUBET, 1992, Construction of approximate inertial manifolds using wavelets, SIAM J. Math. Anal., 23,1455-1481. Zbl0770.35003MR1185638
- [14] O. GOUBET, 1992, Separation des variables dans le probleme de Stokes. Application à son approximation multiéchelles éléments finis, C. R. Acad. Sci.Paris, 315, Série I, 1315-1318. Zbl0763.76043MR1194543
- [15] P. GRISVARD, 1980, Boundary Value Problems in Non-smooth Domains, Univ.of Maryland, Départ, of Math., Lecture Notes n° 19.
- [16] M. MARION and R. TEMAM, 1989, Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26, 1139-1157. Zbl0683.65083MR1014878
- [17] M. MARION and R. TEMAM, 1990, Nonlinear Galerkin methods, the finite elements case, Numer. Math., 57,1-22. Zbl0702.65081MR1057121
- [18] F. PASCAL, 1992, Thesis, Université de Paris-Sud.
- [19] K. PROMISLOW and R. TEMAM, Localization and approximation of attractors for the Ginzburg-Landau equation, J. Dynamic and Diff. Equ., to appear. Zbl0751.34036MR1129558
- [20] R. TEMAM, 1988, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68. Zbl0662.35001MR953967
- [21] R. TEMAM, 1989, Attractors for the Navier-Stokes equations, localization and approximation, J. Fac. Sci. Tokyo, Sec. IA, 36, 629-647. Zbl0698.58040MR1039488
- [22] R. TEMAM, 1990, Inertial manifolds and multigrid methods, SIAM J. Math. Anal., 21, 154-178. Zbl0715.35039MR1032732
- [23] R. TEMAM, 1984, Navier-Stokes Equations, 3rd ed., North-Holland, Amsterdam. Zbl0568.35002MR769654
- [24] R. VERFÜRTH, 1984, Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Numer. Anal., 18, 175-182. Zbl0557.76037MR743884
- [25] H. YSERENTANT, 1986, On the multi-level spliting of finite element spaces, Numer. Math., 49, 379-412. Zbl0608.65065
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.