Error estimates for least-squares mixed finite elements
- Volume: 28, Issue: 5, page 499-516
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] F. BREZZI, 1974, On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, Sér. Anal. Numér., 8, no. R-2, 129-151. Zbl0338.90047MR365287
- [2] G. F CAREY, S. S. CHOW and M. R. SEAGER, 1985, Approximate Boundary-Flux Calculations, Comput. Methods Appl. Mech. Engrg., 50, 107-120. Zbl0546.73057MR802335
- [3] G. F. CAREY and J. T. ODEN, 1983, Finite Elements : A Second Course, vol. II, Prentice-Hall, Englewood Cliffs, N. J. Zbl0515.65075MR767804
- [4] G. F. CAREY and Y. SHEN, 1989, Convergence studies of least-squares finite elements for first order systems, Comm. Appl. Numer. Methods, 5, 427-434. Zbl0684.65083
- [5] C. L. CHANG, 1990, A least-squares finite element method for the Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 83, 1-7. Zbl0726.65121MR1078694
- [6] T.-F. CHEN, 1986, On least-squares approximations to compressible flow problems, Numer. Methods Partial Differential Equations, 2, 207-228. Zbl0631.76082MR925373
- [7] P. G. CIARLET, 1978, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam Zbl0383.65058MR520174
- [8] P. G. CIARLET and P. A. RAVIART, 1972, Interpolation theory over curved elements, with application to finite element methods, Comput. Methods Appl. Mech. Engrg., 1, 217-249. Zbl0261.65079MR375801
- [9] J. DOUGLAS and J. E. ROBERTS, 1985, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44, 39-52. Zbl0624.65109MR771029
- [10] G. J. FIX, M. D. GUNZBURGER and R. A. NICOLAIDES, 1981, On mixed finite element methods for first order elliptic systems, Numer. Math., 37, 29-48. Zbl0459.65072MR615890
- [11] P. GRISVARD, 1985, Elliptic Problems in Nonsmooth Domains. Pitman. Boston. Zbl0695.35060MR775683
- [12] J. HASLINGER and P. NEITTAANMÄKI, 1984, On different finite element methods for approximating the gradient of the solution to the Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 42, 131-148. Zbl0574.65123MR737949
- [13] M. KŘIŽEK and P. NEITTAANMAKI, 1984, On the validity of Friedrichs' inequalities, Math. Scand., 54, 17-26. Zbl0555.35003MR753060
- [14] L. M. MEHRA, 1978, Zur asymptotischen Verteilung der Eigenwerte des Maxwellschen Randwertproblems, Dissertation, Bonn. Zbl0411.35074MR544360
- [15] P. NEITTAANMAKI and R. PICARD, 1980, Error estimates for the finite element approximation to a Maxwell-type boundary value problem, Numer Functional Analysis and Optimization, 2, 267-285. Zbl0469.65079MR588947
- [16] P NEITTAANMAKI and J. SARANEN, 1981, On finite element approximation of the gradient for the solution of Poisson equation, Numer. Math., 37, 333-337. Zbl0463.65073MR627107
- [17] P. NEITTAANMAKI and J. SARANEN, 1980, Finite element approximation of electromagnetic fields in three dimensional space, Numer. Functional Analysis and Optimization, 2, 487-506. Zbl0451.65087MR605756
- [18] A. I. PEHLIVANOV, G. F. CAREY and R. D. LAZAROV, 1993, Least-squares mixed finite elements for second order elliptic problems, SIAM J. Numer. Anal., to appear. Zbl0806.65108MR1293520
- [19] A. I. PEHLIVANOV, G. F CAREY, R. D. LAZAROV and Y. SHEN, 1993, Convergence analysis of least-squares mixed finite elements, Computing, 51, 111-123. Zbl0790.65079MR1248894
- [20] P. A. RAVIART and J. M. THOMAS, 1977, A mixed finite element method for 2nd order elliptic problems, Lect Notes in Math., Springer-Verlag, v. 606, 292-315. Zbl0362.65089MR483555
- [21] J. SARANEN, 1982, On an inequality of Friedrichs, Math. Scand., 51, 310-322. Zbl0524.35100MR690534
- [22] J. SARANEN, 1980, Über die Approximation der Lösungen der Maxwellschen Randwertaufgabe mit der Methode der finiten Elemente, Applicable Analysis, 10, 15-30. Zbl0454.65079MR572804