Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems
Applications of Mathematics (2009)
- Volume: 54, Issue: 3, page 251-266
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLin, Runchang, and Zhang, Zhimin. "Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems." Applications of Mathematics 54.3 (2009): 251-266. <http://eudml.org/doc/37819>.
@article{Lin2009,
abstract = {Natural superconvergence of the least-squares finite element method is surveyed for the one- and two-dimensional Poisson equation. For two-dimensional problems, both the families of Lagrange elements and Raviart-Thomas elements have been considered on uniform triangular and rectangular meshes. Numerical experiments reveal that many superconvergence properties of the standard Galerkin method are preserved by the least-squares finite element method.},
author = {Lin, Runchang, Zhang, Zhimin},
journal = {Applications of Mathematics},
keywords = {least-squares finite element method; mixed finite element method; natural superconvergence; Raviart-Thomas element; Poisson equation; Lagrange elements; triangular and rectangular meshes; numerical experiments; Galerkin method; natural superconvergence; Raviart-Thomas element; least-squares finite element method; Poisson equation; Lagrange elements; triangular and rectangular meshes; numerical experiments; Galerkin method},
language = {eng},
number = {3},
pages = {251-266},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems},
url = {http://eudml.org/doc/37819},
volume = {54},
year = {2009},
}
TY - JOUR
AU - Lin, Runchang
AU - Zhang, Zhimin
TI - Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 251
EP - 266
AB - Natural superconvergence of the least-squares finite element method is surveyed for the one- and two-dimensional Poisson equation. For two-dimensional problems, both the families of Lagrange elements and Raviart-Thomas elements have been considered on uniform triangular and rectangular meshes. Numerical experiments reveal that many superconvergence properties of the standard Galerkin method are preserved by the least-squares finite element method.
LA - eng
KW - least-squares finite element method; mixed finite element method; natural superconvergence; Raviart-Thomas element; Poisson equation; Lagrange elements; triangular and rectangular meshes; numerical experiments; Galerkin method; natural superconvergence; Raviart-Thomas element; least-squares finite element method; Poisson equation; Lagrange elements; triangular and rectangular meshes; numerical experiments; Galerkin method
UR - http://eudml.org/doc/37819
ER -
References
top- Ainsworth, M., Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics, Wiley Interscience, John Wiley & Sons New York (2000). (2000) MR1885308
- Babuška, I., 10.1007/BF02165003, Numer. Math. 16 (1971), 322-333. (1971) MR0288971DOI10.1007/BF02165003
- Babuška, I., Strouboulis, T., The Finite Element Method and its Reliability, Clarendon Press Oxford (2001). (2001) MR1857191
- Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., 10.1002/num.1690120303, Numer. Methods Partial Differ. Equations 12 (1996), 347-392. (1996) MR1388445DOI10.1002/num.1690120303
- Bedivan, D. M., 10.1016/S0898-1221(02)80009-8, Comput. Math. Appl. 43 (2002), 1003-1020. (2002) Zbl1050.65098MR1892481DOI10.1016/S0898-1221(02)80009-8
- Bochev, P. B., Gunzburger, M. D., 10.1137/S0036144597321156, SIAM Rev. 40 (1998), 789-837. (1998) Zbl0914.65108MR1659689DOI10.1137/S0036144597321156
- Brandts, J. H., 10.1007/s002110050064, Numer. Math. 68 (1994), 311-324. (1994) Zbl0823.65103MR1313147DOI10.1007/s002110050064
- Brandts, J. H., 10.1016/S0168-9274(99)00034-3, Appl. Numer. Math. 34 (2000), 39-58. (2000) Zbl0948.65120MR1755693DOI10.1016/S0168-9274(99)00034-3
- Brandts, J. H., Chen, Y. P., Superconvergence of least-squares mixed finite element methods, Int. J. Numer. Anal. Model. 3 (2006), 303-311. (2006) MR2237884
- Brandts, J. H., Chen, Y. P., Yang, J., 10.1093/imanum/dri048, IMA J. Numer. Anal. 26 (2006), 779-789. (2006) Zbl1106.65102MR2269196DOI10.1093/imanum/dri048
- Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Franc. Automat. Inform. Rech. Operat. 8 (1974), 129-151. (1974) Zbl0338.90047MR0365287
- Brezzi, F., J. Douglas, Jr., Fortin, M., Marini, L. D., 10.1051/m2an/1987210405811, Mathematical Modelling and Numerical Analysis 21 (1987), 581-604. (1987) MR0921828DOI10.1051/m2an/1987210405811
- Brezzi, F., J. Douglas, Jr., Marini, L. D., 10.1007/BF01389710, Numer. Math. 47 (1985), 217-235. (1985) Zbl0599.65072MR0799685DOI10.1007/BF01389710
- Cai, Z., Ku, J., 10.1137/050636504, SIAM J. Numer. Anal. 44 (2006), 1721-1734. (2006) Zbl1138.76053MR2257124DOI10.1137/050636504
- Cai, Z., Lazarov, R. D., Manteuffel, T. A., McCormick, S. F., 10.1137/0731091, SIAM J. Numer. Anal. 31 (1994), 1785-1799. (1994) Zbl0813.65119MR1302685DOI10.1137/0731091
- Carey, G. F., Shen, Y., 10.1002/cnm.1630050702, Commun. Appl. Numer. Methods 5 (1989), 427-434. (1989) Zbl0684.65083DOI10.1002/cnm.1630050702
- Chen, C. M., Structure Theory of Superconvergence of Finite Elements, Hunan Science Press Hunan (2001), Chinese. (2001) MR0840307
- Chen, C. M., Huang, Y. Q., High Accuracy Theory of Finite Element Methods, Hunan Science and Technology Press Hunan (1995), Chinese. (1995)
- Chen, Y., 10.1090/S0025-5718-08-02104-2, Math. Comput. 77 (2008), 1269-1291. (2008) Zbl1193.49029MR2398768DOI10.1090/S0025-5718-08-02104-2
- Chen, Z., Finite Element Methods and Their Applications. Scientific Computation, Springer Berlin (2005). (2005) MR2158541
- Douglas, J., Dupont, T., 10.1007/BF01436724, Numer. Math. 22 (1974), 99-109. (1974) Zbl0331.65051MR0362922DOI10.1007/BF01436724
- Douglas, J., Dupont, T., Wahlbin, L., Optimal error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comput. 29 (1975), 475-483. (1975) MR0371077
- Douglas, J., Wang, J., 10.1007/BF02575724, Calcolo 26 (1989), 121-133. (1989) Zbl0714.65084MR1083049DOI10.1007/BF02575724
- Durán, R., 10.1007/BF01385626, Numer. Math. 58 (1990), 287-298. (1990) MR1075159DOI10.1007/BF01385626
- Ewing, R. E., Lazarov, R. D., Wang, J., 10.1137/0728054, SIAM J. Numer. Anal. 28 (1991), 1015-1029. (1991) Zbl0733.65065MR1111451DOI10.1137/0728054
- Ewing, R. E., Liu, M. M., Wang, J., 10.1137/S0036142997322801, SIAM J. Numer. Anal. 36 (1998), 772-787. (1998) Zbl0926.65107MR1681041DOI10.1137/S0036142997322801
- Ewing, R. E., Wang, J., 10.1007/BF01385855, Numer. Math. 63 (1992), 183-194. (1992) Zbl0772.65071MR1182973DOI10.1007/BF01385855
- Gastaldi, L., Nochetto, R. H., 10.1007/BF01408578, Numer. Math. 50 (1987), 587-611. (1987) MR0880337DOI10.1007/BF01408578
- Gastaldi, L., Nochetto, R. H., 10.1051/m2an/1989230101031, RAIRO, Modélisation Math. Anal. Numér. 23 (1989), 103-128. (1989) Zbl0673.65060MR1015921DOI10.1051/m2an/1989230101031
- Jiang, B.-N., The Least-Squares Finite Element Method. Theory and Applications in Computational Fluid Dynamics and Electromagnetics, Springer Berlin (1998). (1998) MR1639101
- Křížek, M., Neittaanmäki, P., Bibliography on superconvergence, Finite element methods. Superconvergence, post-processing, and a posteriori estimates M. Kř'ižek, P. Neittaanmäki, R. Stenberg Marcel Dekker New York (1998), 315-348. (1998) MR1602730
- Křížek, M., Neittaanmäki, P., Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, 50, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1990). (1990) MR1066462
- Li, J., Wheeler, M. F., 10.1137/S0036142999351212, SIAM J. Numer. Anal. 38 (2000), 770-798. (2000) Zbl0974.65106MR1781203DOI10.1137/S0036142999351212
- Lin, Q., Lin, J., Finite Element Methods: Accuracy and Improvement, Science Press Beijing (2006). (2006)
- Lin, Q., Pan, J. H., High accuracy for mixed finite element methods in Raviart-Thomas element, J. Comput. Math. 14 (1996), 175-182. (1996) Zbl0846.65062MR1399911
- Lin, Q., Yan, N., Construction and Analysis of High Efficient Finite Elements, Hebei University Press Hebei (1996), Chinese. (1996)
- Lin, R., Zhang, Z., 10.1002/num.20013, Numer. Methods Partial Differ. Equations 20 (2004), 864-906. (2004) Zbl1068.65123MR2092411DOI10.1002/num.20013
- Lin, R., Zhang, Z., Convergence analysis for least-squares approximations to solutions of second-order two-point boundary value problems, Submitted.
- Pehlivanov, A. I., Carey, G. F., 10.1051/m2an/1994280504991, RAIRO, Modélisation Math. Anal. Numér. 28 (1994), 499-516. (1994) Zbl0820.65065MR1295584DOI10.1051/m2an/1994280504991
- Pehlivanov, A. I., Carey, G. F., Lazarov, R. D., 10.1137/0731071, SIAM J. Numer. Anal. 31 (1994), 1368-1377. (1994) Zbl0806.65108MR1293520DOI10.1137/0731071
- Pehlivanov, A. I., Carey, G. F., Lazarov, R. D., Shen, Y., 10.1007/BF02243846, Computing 51 (1993), 111-123. (1993) Zbl0790.65079MR1248894DOI10.1007/BF02243846
- Raviart, P. A., Thomas, J. M., A mixed finite element method for second order elliptic problems, In: Mathematical Aspects of the Finite Element Method. Lecture Notes Math. 606 I. Galligani, E. Magenes Springer Berlin (1977), 292-315. (1977) MR0483555
- Verfürth, R., A Review of Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner Chichester-Stuttgart (1996). (1996)
- Wahlbin, L. B., Superconvergence in Galerkin Finite Flement Methods. Lecture Notes Math. 1605, Springer Berlin (1995). (1995) MR1439050
- Wheeler, M. F., 10.1137/0710077, SIAM J. Numer. Anal. 10 (1973), 914-917. (1973) Zbl0266.65061MR0343659DOI10.1137/0710077
- Yan, N., Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods, Science Press Beijing (2008). (2008)
- Zhang, Z., 10.1090/S0025-5718-98-00942-9, Math. Comput. 67 (1998), 541-552. (1998) MR1459393DOI10.1090/S0025-5718-98-00942-9
- Zhang, Z., Recovery techniques in finite element methods, In: Adaptive Computations: Theory and Algorithms T. Tang, J. Xu Science Publisher (2007), 297-365. (2007)
- Zhu, Q., High Accuracy and Post-Processing Theory of the Finite Element Method, Science Press Beijing (2008), Chinese. (2008)
- Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z., The Finite Element Method, 6th ed, McGraw-Hill London (2005). (2005) MR3292660
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.