Optimum composite material design
Jaroslav Haslinger; Jan Dvořák
- Volume: 29, Issue: 6, page 657-686
- ISSN: 0764-583X
Access Full Article
topHow to cite
topHaslinger, Jaroslav, and Dvořák, Jan. "Optimum composite material design." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.6 (1995): 657-686. <http://eudml.org/doc/193787>.
@article{Haslinger1995,
author = {Haslinger, Jaroslav, Dvořák, Jan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixture; effective material constants; periodic composite; linear two-dimensional conduction equation; inclusions; optimal control theory; existence; convergence of numerical approximations},
language = {eng},
number = {6},
pages = {657-686},
publisher = {Dunod},
title = {Optimum composite material design},
url = {http://eudml.org/doc/193787},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Haslinger, Jaroslav
AU - Dvořák, Jan
TI - Optimum composite material design
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 6
SP - 657
EP - 686
LA - eng
KW - mixture; effective material constants; periodic composite; linear two-dimensional conduction equation; inclusions; optimal control theory; existence; convergence of numerical approximations
UR - http://eudml.org/doc/193787
ER -
References
top- [1] G. ALLAIRE and R. V. KOHN, 1993, Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials, Quart. Appl. Math., LI, pp. 643-674. Zbl0805.73043MR1247433
- [2] G. ALLAIRE and R. V. KOHN1993, Optimal design for minimum weight and compliance in plane stress usign extremal microstructures, European Journal of Mechanics (A/Solids), 12, pp. 839-878. Zbl0794.73044MR1343090
- [3] M. AVELLANEDA, 1987, Optimal bounds and microgeometries for elastic two-phase composites, SIAM J. Appl Math., 47, pp. 1216-1228. Zbl0632.73079MR916238
- [4] N. S. BAKHVALOV and G. P. PANASENKO, 1984, Averaged Processes in Periodic Media, Nauka, Moscow. Zbl0607.73009MR797571
- [5] M. P. BENDS0E, 1989, Optimal shape design as a material distribution problem, Structural Optimization, 1, pp. 193-202.
- [6] A. BENSOUSSAN, J. L. LIONS and G. PAPANICOLAOU, 1978, Asymptotic Analysis for Periodic Structures, North Holland. Zbl0404.35001MR503330
- [7] J. DVOŘÁK, 1994, A reliable numerical method for computing homogenized coefficients, MAT Report 31, Mathematical Institute, Danish Technical University, Lyngby, Denmark, ISSN 0904-7611 ; submitted.
- [8] G. A. FRANCFORT and F. MURAT, 1987, Optimal bounds for conduction in two-dimensinal, two-phase anisotropic media, Non-Classical Continuum Mechanics, pp. 97-125. Zbl0668.73018MR926503
- [9] Y. GRABOVSKY, 1994, Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. I : The confocal ellipse construction, preprint. Zbl0870.73041
- [10] Y. GRABOVSKY, 1994, Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II : The Vidgergauz microstructure, preprint. Zbl0877.73041
- [11] R. V. KOHN and G.W. MILTON, 1986, On bounding the effective conductivity of anisotropic composites, in Homogenization and Effective Moduli of Materials and Media, J. Ericksen et al, eds., Springer, pp. 97-125. Zbl0631.73012MR859413
- [12] R. V. KOHN and G. STRANG, 1986, Optimal design and relaxation of variational problems I-III, Comm. Pure Appl Math., 39, pp. 113-137, 139-182, 353-377. Zbl0621.49008MR820342
- [13] J. L. LIONS, 1981, Some Methods in the Mathematical Analysis of Systems and Their Control, Gordon and Breach Science Publishers, Inc. Zbl0542.93034MR664760
- [14] K. LURIE and A. CHERKAEV, 1986, The effective properties of composites and problems of optimal design of constructions, Uspekhi Mekhaniki, 9, pp. 1-81. MR885713
- [15] K. LURIE and A. CHERKAEV, 1984, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. Roy. Soc. Edinburgh, 99A, pp. 71-87. Zbl0564.73079MR781086
- [16] G. W. MlLTON, 1990, On charactenzing the set of composite materials: the variational method and the translation method, Comm. Pure Appl. Math., pp. 63-125. Zbl0751.73041
- [17] F. MURAT and L. TARTAR, 1985, Calcul des variations et homogénéisation, in Les Méthodes de l'Homogénéisation : Théorie et Applications en Physique, Eyrolles, pp. 319-369. MR844873
- [18] O. PIRONNEAU, 1984, Optimal Design for Elliptic Problems, Springer. Zbl0534.49001MR725856
- [19] E. SANCHEZ-PALENCÍA, 1980, Non-homogeneous media and vibration theory, in Lecture Notes in Physics, 147, Springer. Zbl0432.70002MR578345
- [20] O. SIGMUND, Materials with prescribed constitutive parameters : an inverse homogenization problem, Int. J. Solids Structures (to appear). Zbl0946.74557MR1287768
- [21] O. SIGMUND, 1994, Tailoring materials with prescribed elastic properties, DCAMM, Report 480, Danish Technical University.
- [22] K. SUZUKI and N. KIKUCHI, 1991, A homogenization method for shape and topology optimization, Comp. Meth. AppL Mech. Engrg., 93, pp. 291-318. Zbl0850.73195
- [23] L. TARTAR, Estimations fines de coefficients homogénéisés, in Ennio De Giorgi Colloquium, Pitman, pp. 168-187. Zbl0586.35004MR909716
- [24] S. B. VIDGERGAUZ, 1989, Regular structures with extremal elastic properties, MTT, 24, pp. 57-63.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.