𝐴 - 𝑃𝑂𝑆𝑇𝐸𝑅𝐼𝑂𝑅𝐼 error estimates for linear exterior problems 𝑉𝐼𝐴 mixed-FEM and DtN mappings

Mauricio A. Barrientos; Gabriel N. Gatica; Matthias Maischak

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2002)

  • Volume: 36, Issue: 2, page 241-272
  • ISSN: 0764-583X

Abstract

top
In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the usual Cea error estimate and the corresponding rate of convergence. In addition, we develop two different a-posteriori error analyses yielding explicit residual and implicit Bank-Weiser type reliable estimates, respectively. Several numerical results illustrate the suitability of these estimators for the adaptive computation of the discrete solutions.

How to cite

top

Barrientos, Mauricio A., Gatica, Gabriel N., and Maischak, Matthias. "${\it A}$-${\it POSTERIORI}$ error estimates for linear exterior problems ${\it VIA}$ mixed-FEM and DtN mappings." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.2 (2002): 241-272. <http://eudml.org/doc/245337>.

@article{Barrientos2002,
abstract = {In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the usual Cea error estimate and the corresponding rate of convergence. In addition, we develop two different a-posteriori error analyses yielding explicit residual and implicit Bank-Weiser type reliable estimates, respectively. Several numerical results illustrate the suitability of these estimators for the adaptive computation of the discrete solutions.},
author = {Barrientos, Mauricio A., Gatica, Gabriel N., Maischak, Matthias},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Dirichlet-to-Neumann mapping; mixed finite elements; Raviart-Thomas spaces; residual based estimates; Bank-Weiser approach; linear exterior transmission problems; second order elliptic equations; Laplace equation; unbounded region; error estimate; convergence; numerical estimate; performance},
language = {eng},
number = {2},
pages = {241-272},
publisher = {EDP-Sciences},
title = {$\{\it A\}$-$\{\it POSTERIORI\}$ error estimates for linear exterior problems $\{\it VIA\}$ mixed-FEM and DtN mappings},
url = {http://eudml.org/doc/245337},
volume = {36},
year = {2002},
}

TY - JOUR
AU - Barrientos, Mauricio A.
AU - Gatica, Gabriel N.
AU - Maischak, Matthias
TI - ${\it A}$-${\it POSTERIORI}$ error estimates for linear exterior problems ${\it VIA}$ mixed-FEM and DtN mappings
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 2
SP - 241
EP - 272
AB - In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the usual Cea error estimate and the corresponding rate of convergence. In addition, we develop two different a-posteriori error analyses yielding explicit residual and implicit Bank-Weiser type reliable estimates, respectively. Several numerical results illustrate the suitability of these estimators for the adaptive computation of the discrete solutions.
LA - eng
KW - Dirichlet-to-Neumann mapping; mixed finite elements; Raviart-Thomas spaces; residual based estimates; Bank-Weiser approach; linear exterior transmission problems; second order elliptic equations; Laplace equation; unbounded region; error estimate; convergence; numerical estimate; performance
UR - http://eudml.org/doc/245337
ER -

References

top
  1. [1] M. Ainsworth and J.T. Oden, A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65 (1993) 23–50. Zbl0797.65080
  2. [2] I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press, New York (1972). Zbl0268.65052MR421106
  3. [3] R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283–301. Zbl0569.65079
  4. [4] M.A. Barrientos, A-posteriori Error Analysis of Dual-Mixed Variational Formulations for Linear and Nonlinear Boundary Value Problems (spanish). Ph.D. thesis, Universidad de Concepción, Concepción, Chile (in preparation). 
  5. [5] M.A. Barrientos, G.N. Gatica and N. Heuer, An a-posteriori error estimate for a linear-nonlinear transmission problem in plane elastostatics. Technical Report 00-11, Departamento de Ingeniería Matemática, Universidad de Concepción (2000). Calcolo (to appear). Zbl1168.65388MR1918321
  6. [6] M.A. Barrientos, G.N. Gatica and E.P. Stephan, A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate. Technical Report 99-25, Departamento de Ingeniería Matemática, Universidad de Concepción (1999). Numer. Math. (to appear). Zbl1067.74062MR1900917
  7. [7] C. Bernardi, Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212–1240. Zbl0678.65003
  8. [8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin, Heidelberg, New York (1991). Zbl0788.73002MR1115205
  9. [9] U. Brink, C. Carstensen and E. Stein, Symmetric coupling of boundary elements and Raviart-Thomas-type mixed finite elements in elastostatics. Numer. Math. 75 (1996) 153–174. Zbl0877.73063
  10. [10] C. Carstensen, A posteriori error estimate for the symmetric coupling of finite elements and boundary elements. Computing 57 (1996) 301–322. Zbl0863.65070
  11. [11] C. Carstensen, An a-posteriori error estimate for a first-kind integral equation. Math. Comp. 66 (1997) 139–155. Zbl0854.65102
  12. [12] C. Carstensen and S.A. Funken, Coupling of mixed finite elements and boundary elements. IMA J. Numer. Anal. 20 (2000) 461–480. Zbl0961.65097
  13. [13] C. Carstensen, S.A. Funken and E.P. Stephan, On the adaptive coupling of FEM and BEM in 2 -d-elasticity. Numer. Math. 77 (1997) 187–221. Zbl0880.73062
  14. [14] C. Carstensen and E.P. Stephan, Adaptive coupling of boundary elements and finite elements. RAIRO Modél. Math. Anal. Numér. 29 (1995) 779–817. Zbl0849.65083
  15. [15] P. Clément, Approximation by finite element functions using local regularisation. RAIRO Anal. Numér. 9 (1975) 77–84. Zbl0368.65008
  16. [16] G.N. Gatica, Combination of mixed finite element and Dirichlet-to-Neumann methods in nonlinear plane elasticity. Appl. Math. Lett. 10 (1997) 29–35. Zbl0895.73066
  17. [17] G.N. Gatica, An application of Babuška-Brezzi’s theory to a class of variational problems. Appl. Anal. 75 (2000) 297–303. Zbl1021.65030
  18. [18] G.N. Gatica and N. Heuer, A dual-dual formulation for the coupling of mixed-FEM and BEM in hyperelasticity. SIAM J. Numer. Anal. 38 (2000) 380–400. Zbl0992.74068
  19. [19] G.N. Gatica, N. Heuer and E.P. Stephan, An implicit-explicit residual error estimator for the coupling of dual-mixed finite elements and boundary elements in elastostatics. Math. Methods Appl. Sci. 24 (2001) 179–191. Zbl0985.65138
  20. [20] G.N. Gatica and G.C. Hsiao, The uncoupling of boundary integral and finite element methods for nonlinear boundary value problems. J. Math. Anal. Appl. 189 (1995) 442–461. Zbl0821.65073
  21. [21] G.N. Gatica and S. Meddahi, An a-posteriori error estimate for the coupling of BEM and mixed-FEM. Numer. Funct. Anal. Optim. 20 (1999) 449–472. Zbl0935.65127
  22. [22] G.N. Gatica and S. Meddahi, A dual-dual mixed formulation for nonlinear exterior transmission problems. Math. Comp. 70 (2001) 1461–1480. Zbl0980.65132
  23. [23] G.N. Gatica and E.P. Stephan, A mixed-FEM formulation for nonlinear incompressible elasticity in the plane. Numer. Methods for Partial Differential Equations 18 (2002) 105–128. Zbl1010.74062
  24. [24] G.N. Gatica and W.L. Wendland, Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems. Appl. Anal. 63 (1996) 39–75. Zbl0865.65077
  25. [25] G.N. Gatica and W.L. Wendland, Coupling of mixed finite elements and boundary elements for a hyperelastic interface problem. SIAM J. Numer. Anal. 34 (1997) 2335–2356. Zbl0895.73067
  26. [26] D. Givoli, Numerical Methods for Problems in Infinite Domains. Elsevier Science Publishers B.V. (1992), Studies in Applied Mechanics 33. Zbl0788.76001MR1199563
  27. [27] P. Grisvard, Elliptic Problems in Non-Smooth Domains. Monographs and Studies in Mathematics, Vol. 24, Pitman (1985). Zbl0695.35060
  28. [28] H. Han and W. Bao, The artificial boundary conditions for incompressible materials on an unbounded domain. Numer. Math. 77 (1997) 347–363. Zbl0892.73062
  29. [29] H. Han and X. Wu, The approximation of the exact boundary conditions at an artificial boundary for linear elastic equations and its application. Math. Comp. 59 (1992) 21–37. Zbl0754.35008
  30. [30] G.C. Hsiao and S. Zhang, Optimal order multigrid methods for solving exterior boundary value problems. SIAM J. Numer. Anal. 31 (1994) 680–694. Zbl0805.65113
  31. [31] R. Kress, Linear Integral Equations. Springer-Verlag (1989). Zbl0671.45001MR1007594
  32. [32] S. Meddahi, J. Valdés, O. Menéndez and P. Pérez, On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69 (1996) 113–124. Zbl0854.65103
  33. [33] P. Mund and E.P. Stephan, An adaptive two-level method for the coupling of nonlinear FEM-BEM equations. SIAM J. Numer. Anal. 36 (1999) 1001–1021. Zbl0938.65138
  34. [34] J.E. Roberts and J.-M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam (1991). Zbl0875.65090MR1115239
  35. [35] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996). Zbl0853.65108
  36. [36] A. Ženišek, Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, London (1990). Zbl0731.65090MR1086876

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.