High-order finite element methods for the Kuramoto-Sivashinsky equation

Georgios Akrivis

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 2, page 157-183
  • ISSN: 0764-583X

How to cite

top

Akrivis, Georgios. "High-order finite element methods for the Kuramoto-Sivashinsky equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.2 (1996): 157-183. <http://eudml.org/doc/193801>.

@article{Akrivis1996,
author = {Akrivis, Georgios},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {optimal order error estimates; periodic initial value problem; implicit Runge-Kutta methods in time; linearization},
language = {eng},
number = {2},
pages = {157-183},
publisher = {Dunod},
title = {High-order finite element methods for the Kuramoto-Sivashinsky equation},
url = {http://eudml.org/doc/193801},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Akrivis, Georgios
TI - High-order finite element methods for the Kuramoto-Sivashinsky equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 2
SP - 157
EP - 183
LA - eng
KW - optimal order error estimates; periodic initial value problem; implicit Runge-Kutta methods in time; linearization
UR - http://eudml.org/doc/193801
ER -

References

top
  1. [1] G. D. AKRIVIS, 1992, Finite difference discretization of the Kuramoto-Sivashinsky equation, Numer. Math., 63, pp. 1-11. Zbl0762.65071MR1182508
  2. [2] G. D. AKRIVIS, 1994, Finite element discretization of the Kuramoto-Sivashinsky equation. Banach Center Publications, 29, pp. 155-163. Zbl0804.65119MR1272926
  3. [3] G. AKRIVIS, V. A. DOUGALIS, O. KARAKASHIAN, Solving the Systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods. Submitted. Zbl0869.65060
  4. [4] J. H. BRAMBLE, P. H. SAMMON, 1980, Efficient higher order single step methods for parabolic problems. Part I, Math. Comp., 35, pp. 655-677. Zbl0476.65072MR572848
  5. [5] P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, R. TEMAM, 1989, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, New York, Springer-Verlag. Zbl0683.58002MR966192
  6. [6] K. DEKKER, J. G. VERWER, 1984, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, Amsterdam, North-Holland. Zbl0571.65057MR774402
  7. [7] J. M. HYMAN, B. NICOLAENKO, 1986, The Kuramoto-Sivashinsky equation : A bridge betwee PDE'S and dynamical systems, Physica, 18D, pp. 113-126. Zbl0602.58033MR838315
  8. [8] J. M. JOLLY, I. G. KEVREKIDIS, E. S. TITI, 1990, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation; analysis and computations, Physica, 44D, pp. 38-60. Zbl0704.58030MR1069671
  9. [9] O. KARAKASHIAN, G. D. AKRIVIS, V. A. DOUGALIS, 1993, On optimal-order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 30, pp. 377-400. Zbl0774.65091MR1211396
  10. [10] O. KARAKASHIAN, W. MCKINNEY, 1990, On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp., 55, pp. 473-496. Zbl0725.65107MR1035935
  11. [11] I. G. KEVREKIDIS, B. NICOLAENKO, J. C. SCOVEL, 1990, Back in the saddle again; a computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math., 50, pp. 760-790. Zbl0722.35011MR1050912
  12. [12] Y. KURAMOTO, 1978, Diffusion induced chaos in reaction Systems, Progr. Theoret. Phys. Suppl., 64, pp. 346-367. 
  13. [13] B. NICOLAENKO, B. SCHEURER, 1984, Remarks on the Kuramoto-Sivashinsky equation, Physica, 12D, pp. 391-395. Zbl0576.35058MR762813
  14. [14] B. NICOLAENKO, B. SCHEURER, R. TEMAM, 1985, Some global dynamical properties of the Kuramoto-Sivashinsky equation : Nonlinear stability and attractors, Physica, 16D, pp. 155-183. Zbl0592.35013MR796268
  15. [15] J. NITSCHE, 1969, Umkehrsätze für Spline-Approximationen, Compositio Mathematica, 21, pp. 400-416. Zbl0199.39302MR259436
  16. [16] J. NITSCHE, 1969, Verfahren von Ritz und Spline-Interpolation bei Sturm-Liouville-Randwertproblemen, Numer. Math., 13, pp. 260-265. Zbl0181.18204MR278532
  17. [17] R. OSSERMAN, 1978, The isoperimetric inequality, Bulletin of the A.M.S., 84, pp. 1182-1238. Zbl0411.52006MR500557
  18. [18] D. T. PAPAGEORGIOU, C. MALDARELLI, D. S. RUMSCHITZKI, 1990, Nonlinear interfacial stability of core-annular film flows, Phys. Fluids, A2, pp. 340-352. Zbl0704.76060MR1039780
  19. [19] D. T. PAPAGEORGIOU, Y. S. SMYRLIS, 1991, The route to chaos for the Kuramoto-Sivashinsky equation, Theoret. Comput. Fluid Dynamics, 3, pp. 15-42. Zbl0728.76055
  20. [20] L. L. SCHUMAKER, 1980, Spline Functions : Basic Theory, New York, John Wiley and Sons, Inc. Zbl0449.41004MR606200
  21. [21] G. SIVASHINSKY, 1980, On flame propagation under conditions of stoichiometry, SIAM J. Appl. Math, 39, pp. 67-72. Zbl0464.76055MR585829
  22. [22] E. TADMOR, 1986, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal, 17, pp. 884-893. Zbl0606.35073MR846395
  23. [23] R. TEMAM, 1988, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, New York : Springer-Verlag. Zbl0662.35001MR953967
  24. [24] V. THOMÉE, B. WENDROFF, 1974, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal., 11,pp. 1059-1068. Zbl0292.65052MR371088

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.