High-order finite element methods for the Kuramoto-Sivashinsky equation
- Volume: 30, Issue: 2, page 157-183
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAkrivis, Georgios. "High-order finite element methods for the Kuramoto-Sivashinsky equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.2 (1996): 157-183. <http://eudml.org/doc/193801>.
@article{Akrivis1996,
author = {Akrivis, Georgios},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {optimal order error estimates; periodic initial value problem; implicit Runge-Kutta methods in time; linearization},
language = {eng},
number = {2},
pages = {157-183},
publisher = {Dunod},
title = {High-order finite element methods for the Kuramoto-Sivashinsky equation},
url = {http://eudml.org/doc/193801},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Akrivis, Georgios
TI - High-order finite element methods for the Kuramoto-Sivashinsky equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 2
SP - 157
EP - 183
LA - eng
KW - optimal order error estimates; periodic initial value problem; implicit Runge-Kutta methods in time; linearization
UR - http://eudml.org/doc/193801
ER -
References
top- [1] G. D. AKRIVIS, 1992, Finite difference discretization of the Kuramoto-Sivashinsky equation, Numer. Math., 63, pp. 1-11. Zbl0762.65071MR1182508
- [2] G. D. AKRIVIS, 1994, Finite element discretization of the Kuramoto-Sivashinsky equation. Banach Center Publications, 29, pp. 155-163. Zbl0804.65119MR1272926
- [3] G. AKRIVIS, V. A. DOUGALIS, O. KARAKASHIAN, Solving the Systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods. Submitted. Zbl0869.65060
- [4] J. H. BRAMBLE, P. H. SAMMON, 1980, Efficient higher order single step methods for parabolic problems. Part I, Math. Comp., 35, pp. 655-677. Zbl0476.65072MR572848
- [5] P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, R. TEMAM, 1989, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, New York, Springer-Verlag. Zbl0683.58002MR966192
- [6] K. DEKKER, J. G. VERWER, 1984, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, Amsterdam, North-Holland. Zbl0571.65057MR774402
- [7] J. M. HYMAN, B. NICOLAENKO, 1986, The Kuramoto-Sivashinsky equation : A bridge betwee PDE'S and dynamical systems, Physica, 18D, pp. 113-126. Zbl0602.58033MR838315
- [8] J. M. JOLLY, I. G. KEVREKIDIS, E. S. TITI, 1990, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation; analysis and computations, Physica, 44D, pp. 38-60. Zbl0704.58030MR1069671
- [9] O. KARAKASHIAN, G. D. AKRIVIS, V. A. DOUGALIS, 1993, On optimal-order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 30, pp. 377-400. Zbl0774.65091MR1211396
- [10] O. KARAKASHIAN, W. MCKINNEY, 1990, On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp., 55, pp. 473-496. Zbl0725.65107MR1035935
- [11] I. G. KEVREKIDIS, B. NICOLAENKO, J. C. SCOVEL, 1990, Back in the saddle again; a computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math., 50, pp. 760-790. Zbl0722.35011MR1050912
- [12] Y. KURAMOTO, 1978, Diffusion induced chaos in reaction Systems, Progr. Theoret. Phys. Suppl., 64, pp. 346-367.
- [13] B. NICOLAENKO, B. SCHEURER, 1984, Remarks on the Kuramoto-Sivashinsky equation, Physica, 12D, pp. 391-395. Zbl0576.35058MR762813
- [14] B. NICOLAENKO, B. SCHEURER, R. TEMAM, 1985, Some global dynamical properties of the Kuramoto-Sivashinsky equation : Nonlinear stability and attractors, Physica, 16D, pp. 155-183. Zbl0592.35013MR796268
- [15] J. NITSCHE, 1969, Umkehrsätze für Spline-Approximationen, Compositio Mathematica, 21, pp. 400-416. Zbl0199.39302MR259436
- [16] J. NITSCHE, 1969, Verfahren von Ritz und Spline-Interpolation bei Sturm-Liouville-Randwertproblemen, Numer. Math., 13, pp. 260-265. Zbl0181.18204MR278532
- [17] R. OSSERMAN, 1978, The isoperimetric inequality, Bulletin of the A.M.S., 84, pp. 1182-1238. Zbl0411.52006MR500557
- [18] D. T. PAPAGEORGIOU, C. MALDARELLI, D. S. RUMSCHITZKI, 1990, Nonlinear interfacial stability of core-annular film flows, Phys. Fluids, A2, pp. 340-352. Zbl0704.76060MR1039780
- [19] D. T. PAPAGEORGIOU, Y. S. SMYRLIS, 1991, The route to chaos for the Kuramoto-Sivashinsky equation, Theoret. Comput. Fluid Dynamics, 3, pp. 15-42. Zbl0728.76055
- [20] L. L. SCHUMAKER, 1980, Spline Functions : Basic Theory, New York, John Wiley and Sons, Inc. Zbl0449.41004MR606200
- [21] G. SIVASHINSKY, 1980, On flame propagation under conditions of stoichiometry, SIAM J. Appl. Math, 39, pp. 67-72. Zbl0464.76055MR585829
- [22] E. TADMOR, 1986, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal, 17, pp. 884-893. Zbl0606.35073MR846395
- [23] R. TEMAM, 1988, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, New York : Springer-Verlag. Zbl0662.35001MR953967
- [24] V. THOMÉE, B. WENDROFF, 1974, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal., 11,pp. 1059-1068. Zbl0292.65052MR371088
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.