Finite element discretization of the Kuramoto-Sivashinsky equation

Georgios Akrivis

Banach Center Publications (1994)

  • Volume: 29, Issue: 1, page 155-163
  • ISSN: 0137-6934

Abstract

top
We analyze semidiscrete and second-order in time fully discrete finite element methods for the Kuramoto-Sivashinsky equation.

How to cite

top

Akrivis, Georgios. "Finite element discretization of the Kuramoto-Sivashinsky equation." Banach Center Publications 29.1 (1994): 155-163. <http://eudml.org/doc/262830>.

@article{Akrivis1994,
abstract = {We analyze semidiscrete and second-order in time fully discrete finite element methods for the Kuramoto-Sivashinsky equation.},
author = {Akrivis, Georgios},
journal = {Banach Center Publications},
keywords = {Kuramoto-Sivashinsky equation; semidiscrete method; finite element method; Galerkin method; Crank-Nicolson scheme; error estimate},
language = {eng},
number = {1},
pages = {155-163},
title = {Finite element discretization of the Kuramoto-Sivashinsky equation},
url = {http://eudml.org/doc/262830},
volume = {29},
year = {1994},
}

TY - JOUR
AU - Akrivis, Georgios
TI - Finite element discretization of the Kuramoto-Sivashinsky equation
JO - Banach Center Publications
PY - 1994
VL - 29
IS - 1
SP - 155
EP - 163
AB - We analyze semidiscrete and second-order in time fully discrete finite element methods for the Kuramoto-Sivashinsky equation.
LA - eng
KW - Kuramoto-Sivashinsky equation; semidiscrete method; finite element method; Galerkin method; Crank-Nicolson scheme; error estimate
UR - http://eudml.org/doc/262830
ER -

References

top
  1. [1] G. D. Akrivis, Finite difference discretization of the Kuramoto-Sivashinsky equation, Numer. Math. 63 (1992), 1-11. Zbl0762.65071
  2. [2] F. E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, in: Applications of Nonlinear Partial Differential Equations, R. Finn (ed.), Proc. Sympos. Appl. Math. 17, Amer. Math. Soc., Providence 1965, 24-49. 
  3. [3] P. Constantin, C. Foiaş, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer, New York 1989. Zbl0683.58002
  4. [4] J. M. Hyman and B. Nicolaenko, The Kuramoto-Sivashinsky equation: A bridge between PDE's and dynamical systems, Phys. D 18 (1986), 113-126. Zbl0602.58033
  5. [5] J. M. Jolly, I. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation; analysis and computations, ibid. 44 (1990), 38-60. Zbl0704.58030
  6. [6] I. G. Kevrekidis, B. Nicolaenko and J. C. Scovel, Back in the saddle again; a computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math. 50 (1990), 760-790. Zbl0722.35011
  7. [7] Y. Kuramoto, Diffusion induced chaos in reaction systems, Progr. Theoret. Phys. Suppl. 64 (1978), 346-367. 
  8. [8] B. Nicolaenko and B. Scheurer, Remarks on the Kuramoto-Sivashinsky equation, Phys. D 12 (1984), 391-395. Zbl0576.35058
  9. [9] B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equation: Nonlinear stability and attractors, ibid. 16 (1985), 155-183. Zbl0592.35013
  10. [10] J. Nitsche, Umkehrsätze für Spline-Approximationen, Compositio Math. 21 (1969), 400-416. Zbl0199.39302
  11. [11] J. Nitsche, Verfahren von Ritz und Spline-Interpolation bei Sturm-Liouville-Randwertproblemen, Numer. Math. 13 (1969), 260-265. Zbl0181.18204
  12. [12] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182-1238. Zbl0411.52006
  13. [13] D. T. Papageorgiou, C. Maldarelli and D. S. Rumschitzki, Nonlinear interfacial stability of core-annular film flows, Phys. Fluids A2 (1990), 340-352. Zbl0704.76060
  14. [14] D. T. Papageorgiou and Y. S. Smyrlis, The route to chaos for the Kuramoto-Sivashin- sky equation, Theoret. Comput. Fluid Dynamics 3 (1991), 15-42. Zbl0728.76055
  15. [15] L. L. Schumaker, Spline Functions: Basic Theory, Wiley, New York 1981. Zbl0449.41004
  16. [16] G. I. Sivashinsky, On flame propagation under conditions of stoichiometry, SIAM J. Appl. Math. 39 (1980), 67-82. Zbl0464.76055
  17. [17] E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 17 (1986), 884-893. Zbl0606.35073
  18. [18] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Sprin- ger, New York 1988. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.