Finite element convergence for the Darwin model to Maxwell's equations
- Volume: 31, Issue: 2, page 213-249
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCiarlet, P. Jr., and Zou, Jun. "Finite element convergence for the Darwin model to Maxwell's equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.2 (1997): 213-249. <http://eudml.org/doc/193836>.
@article{Ciarlet1997,
author = {Ciarlet, P. Jr., Zou, Jun},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Darwin model; Maxwell equations; finite element methods; convergence; error estimates},
language = {eng},
number = {2},
pages = {213-249},
publisher = {Dunod},
title = {Finite element convergence for the Darwin model to Maxwell's equations},
url = {http://eudml.org/doc/193836},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Ciarlet, P. Jr.
AU - Zou, Jun
TI - Finite element convergence for the Darwin model to Maxwell's equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 2
SP - 213
EP - 249
LA - eng
KW - Darwin model; Maxwell equations; finite element methods; convergence; error estimates
UR - http://eudml.org/doc/193836
ER -
References
top- [1] R. A. ADAMS, 1975, Sobolev spaces. Academic Press, New York, 1975. Zbl0314.46030MR450957
- [2] J. J. AMBROSIANO, S. T. BRANDON and E. SONNENDRUCKER, 1995, A finite element formulation of the Darwin PIC model for use on unstructured grids J. Comput. Physics, 121(2), 281-297. Zbl0834.76052MR1354305
- [3] I. BABUSKA, 1973, The finite element method with Lagrange multipliers Numer. Math, 20, 179-192. Zbl0258.65108MR359352
- [4] M. BERCOVIER and O. PIRONNEAU, 1979, Error estimates for the finite element method solution of the Stokes problem in the primitive variables Numer. Math., 33, 211-224. Zbl0423.65058MR549450
- [5] F. BREZZI, 1974, On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal. Numer., 129-151. Zbl0338.90047MR365287
- [6] F. BREZZI and M. FORTIN, 1991, Mixed and hybrid finite element methods. Springer-Verlag, Berlin. Zbl0788.73002MR1115205
- [7] P. CIARLET, 1978, The finite element method for elliptic problems. North-Holland, Amsterdam. Zbl0383.65058MR520174
- [8] P. DEGOND and P. A. RAVIART, 1992, An analysis of the Darwin model of approximation to Maxwell's equations Forum Math., 4, 13-44. Zbl0755.35137MR1142472
- [9] V. GIRAULT and P.-A. RAVIART, 1986, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin. Zbl0585.65077MR851383
- [10] P. GRISVARD, 1985, Elliptic problems in nonsmooth domains. Pitman, Advanced Pubhshing Program, Boston. Zbl0695.35060MR775683
- [11] D. W. HEWETT and J. K. BOYD, 1987, Streamlined Darwin simulation of nonneutral plasmas. J. Comput. Phys., 73, 166-181. Zbl0611.76133MR888935
- [12] D. W. HEWETT and C. NIELSON, 1978, A multidimensional quasineutral plasma simulation model. J. Comput. Phys. 29, 219-236. Zbl0388.76108
- [13] P. HOOD and G. TAYLOR, 1974, Navier-Stokes equation using mixed interpolation. In Oden, editor, Finite element methods in flow problems. UAH Press.
- [14] J.-L. LIONS and E. MAGENES, 1968, Problèmes aux limites non homogènes et applications. Dunod, Paris. Zbl0165.10801
- [15] J.-C. NEDELEC, 1980, Mixed finite éléments in R3. Numer. Math., 35, 315-341. Zbl0419.65069MR592160
- [16] J.-C. NEDELEC, 1982, Eléments finis mixtes incompressibles pour l'équation de Stokes dans R3. Numer. Math., 39, 97-112. Zbl0488.76038MR664539
- [17] C. NlELSON and H. R. LEWIS, 1976, Particle code models in the non radiative limit. Methods Comput. Phys., 16, 367-388.
- [18] P.-A. RAVIART, 1993, Finite element approximation of the time-dependent Maxwell equations. Technical report, Ecole Polytechnique, France, GdR SPARCH #6.
- [19] R. VERFURTH, 1984, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numer., 18(2), 175-182. Zbl0557.76037MR743884
- [20] C. WEBER, 1980, A local compactness theorem for Maxwell's equations. Math. Meth. in the Appl. Sci., 2, 12-25. Zbl0432.35032MR561375
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.