Finite element convergence for the Darwin model to Maxwell's equations

P. Jr. Ciarlet; Jun Zou

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 2, page 213-249
  • ISSN: 0764-583X

How to cite

top

Ciarlet, P. Jr., and Zou, Jun. "Finite element convergence for the Darwin model to Maxwell's equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.2 (1997): 213-249. <http://eudml.org/doc/193836>.

@article{Ciarlet1997,
author = {Ciarlet, P. Jr., Zou, Jun},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Darwin model; Maxwell equations; finite element methods; convergence; error estimates},
language = {eng},
number = {2},
pages = {213-249},
publisher = {Dunod},
title = {Finite element convergence for the Darwin model to Maxwell's equations},
url = {http://eudml.org/doc/193836},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Ciarlet, P. Jr.
AU - Zou, Jun
TI - Finite element convergence for the Darwin model to Maxwell's equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 2
SP - 213
EP - 249
LA - eng
KW - Darwin model; Maxwell equations; finite element methods; convergence; error estimates
UR - http://eudml.org/doc/193836
ER -

References

top
  1. [1] R. A. ADAMS, 1975, Sobolev spaces. Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] J. J. AMBROSIANO, S. T. BRANDON and E. SONNENDRUCKER, 1995, A finite element formulation of the Darwin PIC model for use on unstructured grids J. Comput. Physics, 121(2), 281-297. Zbl0834.76052MR1354305
  3. [3] I. BABUSKA, 1973, The finite element method with Lagrange multipliers Numer. Math, 20, 179-192. Zbl0258.65108MR359352
  4. [4] M. BERCOVIER and O. PIRONNEAU, 1979, Error estimates for the finite element method solution of the Stokes problem in the primitive variables Numer. Math., 33, 211-224. Zbl0423.65058MR549450
  5. [5] F. BREZZI, 1974, On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal. Numer., 129-151. Zbl0338.90047MR365287
  6. [6] F. BREZZI and M. FORTIN, 1991, Mixed and hybrid finite element methods. Springer-Verlag, Berlin. Zbl0788.73002MR1115205
  7. [7] P. CIARLET, 1978, The finite element method for elliptic problems. North-Holland, Amsterdam. Zbl0383.65058MR520174
  8. [8] P. DEGOND and P. A. RAVIART, 1992, An analysis of the Darwin model of approximation to Maxwell's equations Forum Math., 4, 13-44. Zbl0755.35137MR1142472
  9. [9] V. GIRAULT and P.-A. RAVIART, 1986, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin. Zbl0585.65077MR851383
  10. [10] P. GRISVARD, 1985, Elliptic problems in nonsmooth domains. Pitman, Advanced Pubhshing Program, Boston. Zbl0695.35060MR775683
  11. [11] D. W. HEWETT and J. K. BOYD, 1987, Streamlined Darwin simulation of nonneutral plasmas. J. Comput. Phys., 73, 166-181. Zbl0611.76133MR888935
  12. [12] D. W. HEWETT and C. NIELSON, 1978, A multidimensional quasineutral plasma simulation model. J. Comput. Phys. 29, 219-236. Zbl0388.76108
  13. [13] P. HOOD and G. TAYLOR, 1974, Navier-Stokes equation using mixed interpolation. In Oden, editor, Finite element methods in flow problems. UAH Press. 
  14. [14] J.-L. LIONS and E. MAGENES, 1968, Problèmes aux limites non homogènes et applications. Dunod, Paris. Zbl0165.10801
  15. [15] J.-C. NEDELEC, 1980, Mixed finite éléments in R3. Numer. Math., 35, 315-341. Zbl0419.65069MR592160
  16. [16] J.-C. NEDELEC, 1982, Eléments finis mixtes incompressibles pour l'équation de Stokes dans R3. Numer. Math., 39, 97-112. Zbl0488.76038MR664539
  17. [17] C. NlELSON and H. R. LEWIS, 1976, Particle code models in the non radiative limit. Methods Comput. Phys., 16, 367-388. 
  18. [18] P.-A. RAVIART, 1993, Finite element approximation of the time-dependent Maxwell equations. Technical report, Ecole Polytechnique, France, GdR SPARCH #6. 
  19. [19] R. VERFURTH, 1984, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numer., 18(2), 175-182. Zbl0557.76037MR743884
  20. [20] C. WEBER, 1980, A local compactness theorem for Maxwell's equations. Math. Meth. in the Appl. Sci., 2, 12-25. Zbl0432.35032MR561375

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.