# On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation.

G.D. Akrivis; V.A. Dougalis; ...

Numerische Mathematik (1991)

- Volume: 59, Issue: 1, page 31-54
- ISSN: 0029-599X; 0945-3245/e

## Access Full Article

top## How to cite

topAkrivis, G.D., Dougalis, V.A., and .... "On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation.." Numerische Mathematik 59.1 (1991): 31-54. <http://eudml.org/doc/133538>.

@article{Akrivis1991,

author = {Akrivis, G.D., Dougalis, V.A., ...},

journal = {Numerische Mathematik},

keywords = {weakly nonlinear Schrödinger equation; conservative schemes; Galerkin method; Crank-Nicolson type methods; convergence; Newton method of ``inner'' iterations; numerical results},

number = {1},

pages = {31-54},

title = {On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation.},

url = {http://eudml.org/doc/133538},

volume = {59},

year = {1991},

}

TY - JOUR

AU - Akrivis, G.D.

AU - Dougalis, V.A.

AU - ...

TI - On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation.

JO - Numerische Mathematik

PY - 1991

VL - 59

IS - 1

SP - 31

EP - 54

KW - weakly nonlinear Schrödinger equation; conservative schemes; Galerkin method; Crank-Nicolson type methods; convergence; Newton method of ``inner'' iterations; numerical results

UR - http://eudml.org/doc/133538

ER -

## Citations in EuDML Documents

top- Georgios Akrivis, Vassilios A. Dougalis, Ohannes Karakashian, Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods
- Georgios E. Zouraris, On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation
- G. D. Akrivis, V. A. Dougalis, On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation
- Georgios E. Zouraris, On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.