On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation.

G.D. Akrivis; V.A. Dougalis; ...

Numerische Mathematik (1991)

  • Volume: 59, Issue: 1, page 31-54
  • ISSN: 0029-599X; 0945-3245/e

How to cite

top

Akrivis, G.D., Dougalis, V.A., and .... "On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation.." Numerische Mathematik 59.1 (1991): 31-54. <http://eudml.org/doc/133538>.

@article{Akrivis1991,
author = {Akrivis, G.D., Dougalis, V.A., ...},
journal = {Numerische Mathematik},
keywords = {weakly nonlinear Schrödinger equation; conservative schemes; Galerkin method; Crank-Nicolson type methods; convergence; Newton method of ``inner'' iterations; numerical results},
number = {1},
pages = {31-54},
title = {On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation.},
url = {http://eudml.org/doc/133538},
volume = {59},
year = {1991},
}

TY - JOUR
AU - Akrivis, G.D.
AU - Dougalis, V.A.
AU - ...
TI - On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation.
JO - Numerische Mathematik
PY - 1991
VL - 59
IS - 1
SP - 31
EP - 54
KW - weakly nonlinear Schrödinger equation; conservative schemes; Galerkin method; Crank-Nicolson type methods; convergence; Newton method of ``inner'' iterations; numerical results
UR - http://eudml.org/doc/133538
ER -

Citations in EuDML Documents

top
  1. Georgios Akrivis, Vassilios A. Dougalis, Ohannes Karakashian, Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods
  2. Georgios E. Zouraris, On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation
  3. G. D. Akrivis, V. A. Dougalis, On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation
  4. Georgios E. Zouraris, On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation

NotesEmbed ?

top

You must be logged in to post comments.