Numerical approximation of stiff transmission problems by mixed finite element methods

Daniela Capatina-Papaghiuc; Nicolas Raynaud

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 5, page 611-629
  • ISSN: 0764-583X

How to cite

top

Capatina-Papaghiuc, Daniela, and Raynaud, Nicolas. "Numerical approximation of stiff transmission problems by mixed finite element methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.5 (1998): 611-629. <http://eudml.org/doc/193888>.

@article{Capatina1998,
author = {Capatina-Papaghiuc, Daniela, Raynaud, Nicolas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {uniform convergence; hybrid methods; stress tensor; anti-plane displacement; regular triangulation},
language = {eng},
number = {5},
pages = {611-629},
publisher = {Dunod},
title = {Numerical approximation of stiff transmission problems by mixed finite element methods},
url = {http://eudml.org/doc/193888},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Capatina-Papaghiuc, Daniela
AU - Raynaud, Nicolas
TI - Numerical approximation of stiff transmission problems by mixed finite element methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 5
SP - 611
EP - 629
LA - eng
KW - uniform convergence; hybrid methods; stress tensor; anti-plane displacement; regular triangulation
UR - http://eudml.org/doc/193888
ER -

References

top
  1. [1] V. ANDREEV, S. SAMARSKY (1978) : Méthodes aux différences pour les équations elliptiques, Editions de Moscou. Zbl0377.35004MR502018
  2. [2] D. N. ARNOLD (1981): Discretization by finite elements of a model parameter dependent problem, Numer. Math., 37, 405-421. Zbl0446.73066MR627113
  3. [3] D. N. ARNOLD, F. BREZZI (1985): Mixed and nonconforming finite element methods: implementation, post-processing and error estimates, Mathematical Modelling and Numerical Analysis, 19, 7-32. Zbl0567.65078MR813687
  4. [4] I. BABUŠKA, M. SURI (1992): On locking and robustness in the finite element method, SIAM J. Numer. Anal., 29, 1261-1293. Zbl0763.65085MR1182731
  5. [5] A. BAYLISS, E. TURKEL (1980): Radiation boundary condition for wave-like equations, Comm. on Pure and Appl. Math., 13, 707-726. Zbl0438.35043MR596431
  6. [6] A. BENDALI, K. LEMRABET (1997): The effect of a thin coating of a time-harmonic wave for the Helmholtz equation, SIAM J. of Applied Math. (to appear). Zbl0869.35068MR1417476
  7. [7] A. BENDALI, N. RAYNAUD, J.-M. THOMAS (1966): New decomposition of shape function spaces of mixed finite element methods, Applied Mathematics Letters, 9, 33-38. Zbl0854.65097MR1389594
  8. [8] F. BREZZI, M. FORTIN (1991): Mixed and Hybrid Finite Element Methods, Springer Verlag, New York. Zbl0788.73002MR1115205
  9. [9] D. CAILLERIE (1980): The effect of a thin inclusion of high rigidity in an elastic body, Math. Meth. in the Appl. Sci., 2, 251-270. Zbl0446.73014MR581205
  10. [10] D. CAPATINA-PAPAGHIUC (1997): Contribution à la prévention du phénomène de verrouillage numérique, Thesis, Université de Pau, France. 
  11. [11] D. CHENAIS, J.-C. PAUMIER (1994): On the locking phenomenon for a class of elliptic problem, Numer. Math., 67, 427-440. Zbl0798.73054MR1274440
  12. [12] P. G. CIARLET (1978): The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications 4, North Holland, Amsterdam. Zbl0383.65058MR520174
  13. [13] P. DESTUYNDER (1986): Une théorie asymptotique des plaques minces en élasticité linéaire, Collection RMA, Masson, Paris. Zbl0627.73064MR830660
  14. [14] B. ENGQUIST, A. MAJDA (1977): Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31, 629-651. Zbl0367.65051MR436612
  15. [15] B. ENGQUIST, J.-C. NEDELEC (1993): Effective boundary conditions for accoustic and electromagnetic scattering in thin layers, Rapport Intern 278, École Polytechnique, Palaiseau. 
  16. [16] V. GIRAULT, P. A. RAVIART (1986) : Finite Element Methods for Navier-Stokes Equations, Springer Verlag, Berlin. Zbl0585.65077MR851383
  17. [17] M. D. GUNZBURGER (1989): Finite element methods for viscous incompressible flows, A guide to theory, practice and algorithms, Computer Science and Scientific Computing, Academic Press, San Diego. Zbl0697.76031MR1017032
  18. [18] H. LE DRET (1991): Problèmes variationnels dans les multi-domaines ; modélisation et applications, Collections RMA, Masson, Paris. Zbl0744.73027MR1130395
  19. [19] K. LEMRABET (1987): Étude de divers problèmes aux limites de Ventcel d'origine physique ou mécanique dans des domaines non réguliers, Thesis, USTHB, Alger. 
  20. [20] K. LEMRABET (1977): Régularité de la solution d'un problème de transmission, J. Maths Pures et Appl., 56, 1-38. Zbl0366.35036MR509312
  21. [21] N. RAYNAUD (1994): Approximation par éléments finis de problèmes de transmission raide, Thesis, Université de Pau, France. 
  22. [22] J. E. ROBERTS, J. M. THOMAS (1991): Mixed and Hybrid Methods, in Handbook of Numerical Analysis, vol. II: Finite Element Methods, P. G. Ciarlet & J. L. Lions editors, North Holland, Amsterdam, 523-639. Zbl0875.65090MR1115239

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.