Finite volumes and nonlinear diffusion equations
R. Eymard; T. Gallouët; D. Hilhorst; Y. Naït Slimane
- Volume: 32, Issue: 6, page 747-761
- ISSN: 0764-583X
Access Full Article
topHow to cite
topEymard, R., et al. "Finite volumes and nonlinear diffusion equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.6 (1998): 747-761. <http://eudml.org/doc/193896>.
@article{Eymard1998,
author = {Eymard, R., Gallouët, T., Hilhorst, D., Naït Slimane, Y.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear diffusion equations; nonlinear Stefan-type equation; convergence; finite volume methods},
language = {eng},
number = {6},
pages = {747-761},
publisher = {Dunod},
title = {Finite volumes and nonlinear diffusion equations},
url = {http://eudml.org/doc/193896},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Eymard, R.
AU - Gallouët, T.
AU - Hilhorst, D.
AU - Naït Slimane, Y.
TI - Finite volumes and nonlinear diffusion equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 6
SP - 747
EP - 761
LA - eng
KW - nonlinear diffusion equations; nonlinear Stefan-type equation; convergence; finite volume methods
UR - http://eudml.org/doc/193896
ER -
References
top- [1] G. AMIEZ, P. A. GREMAUD, On a numerical approach to Stefan-like problems, Numer. Math. 59, 71-89 (1991). Zbl0731.65107MR1103754
- [2] D. R. ATTHEYA Finite Difference Scheme for Melting Problems, J. Inst. Math. Appl. 13, 353-366 (1974). MR351295
- [3] L. A. BAUGHMAN, N. J. WALKINGTON, Co-volume methods for degenerate parabolic problems, Numer. Math. 64, 45-67 (1993). Zbl0797.65075MR1191322
- [4] A. E. BERGER, H. BREZIS, J. C. W. ROGERS, A Numerical Method for Solving the Problem u1 - Δf(u) = 0, RAIRO Numerical Analysis, Vol. 13, 4, 297-312 (1979). Zbl0426.65052MR555381
- [5] M. BERTSCH, R. KERSNER, L. A. PELETIER, Positivity versus localization in degenerate diffusion equations, Nonlinear Analysis TMA, Vol. 9, 9, 987-1008 (1995). Zbl0596.35073MR804564
- [6] J. F. CIAVALDINI, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis, SIAM J. Numer. Anal., 12, 464-488 (1975). IAM J. Numer. Anal., 12, 464-488 (1975). Zbl0272.65101MR391741
- [7] M. GUEDDA, D. HILHORST, M. A. PELETIER, Disappearing interfaces in nonlinear diffusion, to appear in Advances in Mathematical Sciences and Applications. Zbl0891.35071MR1476273
- [8] R. HERBIN, An error estimate for a finite volume scheme for a diffusion convection problem on a triangular mesh, Num. Meth. P.D.E., 165-173 (1995). Zbl0822.65085MR1316144
- [9] S. L. KAMENOMOSTSKAJAOn the Stefan problem, Mat. Sb. 53(95), 489-514 (1961 in Russian). Zbl0102.09301MR141895
- [10] O. A. LADYŽENSKAJA, V. A. SOLONNIKOV, N. N. URAL'CEVA, Linear and Quasilinear Equations of Parabolic Type, Transl. of Math. Monographs, 23 (1968). Zbl0174.15403MR241822
- [11] A. M. MEIRMANOV, The Stefan Problem, Walter de Gruyter Ed., New York (1992). Zbl0751.35052MR1154310
- [12] G. H. MEYER, Multidimensional Stefan Problems, SIAM J. Num. Anal., 10, 522-538 (1973). Zbl0256.65054MR331807
- [13] R. H. NOCHETTO, Finite Element Methods for Parabolic Free Boundary Problems, Advances in Numerical Analysis, Vol. I: Nonlinear Partial Differential Equations and Dynamical Systems, W. Light ed., Oxford University Press, 34-88 (1991). Zbl0733.65089MR1138471
- [14] O. A. OLEINIK, A method of solution of the general Stefan Problem, Sov. Math. Dokl. 1, 1350-1354 (1960). Zbl0131.09202MR125341
- [15] C. VERDI, Numerical aspects of parabolic free boundary and hysteresis problems, Phase Transitions and Hysteresis, A. Visinitin ed., Springer-Verlag, 213-284 (1994). Zbl0819.35155MR1321834
Citations in EuDML Documents
top- Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients
- Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients
- Robert Eymard, Raphaèle Herbin, Anthony Michel, Mathematical study of a petroleum-engineering scheme
- Robert Eymard, Raphaèle Herbin, Anthony Michel, Mathematical study of a petroleum-engineering scheme
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.